[1] MASI I, WU Y, HASSNER T, et al. Deep face recognition: a survey[C]//Proceedings of the 31st SIBGRAPI Conference on Graphics, Patterns and Images, Parana, Oct 29-Nov 1, 2018. Piscataway: IEEE, 2018: 471-478.
[2] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
[3] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]//Proceedings of the 3rd International Conference on Learning Represen-tations, San Diego, May 7-9, 2015: 1-17.
[4] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, Jun 7, 2015. Washington: IEEE Computer Society, 2015: 1-9.
[5] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Con-ference on Computer Vision and Pattern Recognition, Las Vegas, Jun 26-Jul 1, 2016. Washington: IEEE Computer Society, 2016: 770-778.
[6] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 4700-4708.
[7] WANG Q, WU B, ZHU P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Pro-ceedings of the 2020 IEEE Conference on Computer Vision and Pattern Recognition, Washington, Jun 14-19, 2020. Wa-shington: IEEE Computer Society, 2020: 11531-11539.
[8] DENG J, GUO J, XUE N, et al. ArcFace: additive angular margin loss for deep face recognition[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 4690-4699.
[9] WANG X, ZHANG S, WANG S, et al. Mis-classified vector guided softmax loss for face recognition[C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence, the 32nd Innovative Applications of Artificial Intelligence Conference, the 10th AAAI Symposium on Educational Advances in Artificial Intelligence, New York, Feb 7-12, 2020. Menlo Park: AAAI, 2020: 12241-12248.
[10] HUANG Y, WANG Y, TAI Y, et al. CurricularFace: adaptive curriculum learning loss for deep face recognition[C]//Pro-ceedings of the 2020 IEEE Conference on Computer Vision and Pattern Recognition, Washington, Jun 14-19, 2020. Wa-shington: IEEE Computer Society, 2020: 5901-5910.
[11] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 7132-7141.
[12] LI X, WANG W, HU X, et al. Selective kernel networks[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Washington: IEEE Computer Society, 2019: 510-519.
[13] PARK J, WOO S, LEE J Y, et al. BAM: bottleneck atten-tion module[C]//Proceedings of the 29th British Machine Vision Conference, Newcastle, Sep 3-6, 2018. Britain: BMVA, 2019: 1-14.
[14] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//LNCS 11211: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 3-19.
[15] LI X, HU X, YANG J. Spatial group-wise enhance: impro-ving semantic feature learning in convolutional networks[J]. arXiv:1905.09646, 2019.
[16] 罗思诗, 李茂军, 陈满. 多尺度融合注意力机制的人脸表情识别网络[J]. 计算机工程与应用, 2023, 59(1): 199-206.
LUO S S, LI M J, CHEN M. Multi-scale integrated atten-tion mechanism for facial expression recognition network[J]. Computer Engineering and Applications, 2023, 59(1): 199-206.
[17] 张宏鸣, 周利香, 李永恒, 等. 基于改进MobileFaceNet的羊脸识别方法[J]. 农业机械学报, 2022, 53(5): 267-274.
ZHANG H M, ZHOU L X, LI Y H, et al. Sheep face recognition method based on improved MobileFaceNet[J]. Transactions of the Chinese Society of Agricultural Ma-chinery, 2022, 53(5): 267-274.
[18] CHEN S, LIU Y, GAO X, et al. MobileFaceNets: efficient CNNs for accurate real-time face verification on mobile devices[C]//LNCS 10996: Proceedings of the 2018 Chinese Conference on Biometric Recognition, Urumqi, Aug 11-12, 2018. Cham: Springer, 2018: 428-438.
[19] SCHROFF F, KALENICHENKO D, PHILBIN J. FaceNet: a unified embedding for face recognition and clustering[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, Jun 7-12, 2015.Washington: IEEE Computer Society, 2015: 815-823.
[20] LIU W, WEN Y, YU Z, et al. SphereFace: deep hypersphere embedding for face recognition[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 212-220.
[21] WANG H, WANG Y, ZHOU Z, et al. CosFace: large margin cosine loss for deep face recognition[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington:IEEE Computer Society, 2018: 5265-5274.
[22] ZHANG K, ZHANG Z, LI Z, et al. Joint face detection and alignment using multitask cascaded convolutional networks[J]. IEEE Signal Processing Letters, 2016, 23(10): 1499-1503.
[23] LI B, LIU Y, WANG X. Gradient harmonized single-stage detector[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence, the 31st Innovative Applications of Artificial Intelligence Conference, the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, Honolulu, Jan 27-Feb 1, 2019. Menlo Park: AAAI, 2019: 8577-8584.
[24] MENG Q, ZHAO S, HUANG Z, et al. MagFace: a universal representation for face recognition and quality assessment[C]//Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition, Jun 19-25, 2021. Washington: IEEE Computer Society, 2021: 14225-14234. |