[1] CHEN Z, HUANG H, LIU B, et al. Semantic and syntactic enhanced aspect sentiment triplet Extraction[C]//Findings of the Association for Computational Linguistics, Aug 1-6, 2021. Stroudsburg: ACL, 2021:1474-1483.
[2] WU Z, YING C, ZHAO F, et al. Grid tagging scheme for aspect-oriented fine-grained opinion extraction[C]//Findings of the Association for Computational Linguistics, Nov 16-20, 2020. Stroudsburg: ACL, 2020: 2576-2585.
[3] 徐康, 李霏, 姬东鸿. 结合依存图卷积与文本片段搜索的方面情感三元组抽取[J]. 计算机工程, 2023, 49(4): 61-67.
XU K, LI F, JI D H. Aspect sentiment triple extraction model by combining dependency graph convolution and text span search[J]. Computer Engineering,?2023, 49(4): 61-67.
[4] XU H, LIU B, SHU L, et al. Double embeddings and CNN-based sequence labeling for aspect extraction[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, Melbourne, Jul 15-20, 2018. Stroudsburg: ACL, 2018: 592-598.
[5] JIANG J, WANG A, AIZAWA A, et al. Attention-based relational graph convolutional network for target-oriented opinion words extraction[C]//Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics, Apr 19-23, 2021. Stroudsburg: ACL, 2021: 1986-1997.
[6] LIU J, YUE Z. Attention modeling for targeted sentiment[C]//Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics, Valencia, Apr 3-7, 2017. Stroudsburg: ACL, 2017: 572-577.
[7] TAY Y, TUAN L A, HUI S C. Learning to attend via word-aspect associative fusion for aspect-based sentiment analysis[C]//Proceedings of the 2018 AAAI Conference on Artificial Intelligence, New Orleans, Feb 2-7, 2018. Menlo Park: AAAI, 2018: 5956-5963.
[8] PENG H, XU L, BING L, et al. Knowing what, how and why: a near complete solution for aspect-based sentiment analysis[C]//Proceedings of the 2020 AAAI Conference on Artificial Intelligence, New York, Feb 7-12, 2020. Menlo Park: AAAI, 2020: 8600-8607.
[9] LI Y, WANG F, ZHANG W, et al. A more fine-grained aspect-sentiment-opinion triplet extraction task[J]. arXiv:2103.15255, 2021.
[10] XU L, LI H, LU W, et al. Position-aware tagging for aspect sentiment triplet extraction[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, Nov 16-20, 2020. Stroudsburg: ACL, 2020: 2339-2349.
[11] XU L, CHIA Y K, BING L. Learning span-level interactions for aspect sentiment triplet extraction[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, Aug 1-6, 2021. Stroudsburg: ACL, 2021: 4755-4766.
[12] CHEN S, WANG Y, LIU J, et al. Bidirectional machine reading comprehension for aspect sentiment triplet extraction[C]//Proceedings of the 2021 AAAI Conference on Artificial Intelligence, Feb 2-9, 2021. Menlo Park: AAAI, 2021: 12666-12674.
[13] MAO Y, SHEN Y, YU C, et al. A joint training dual-MRC framework for aspect based sentiment analysis[C]//Proceedings of the 2021 AAAI Conference on Artificial Intelligence, Feb 2-9, 2021. Menlo Park: AAAI, 2021: 13543-13551.
[14] LIU S, LI K, LI Z. A robustly optimized BMRC for aspect sentiment triplet extraction[C]//Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Seattle, Jul 10-15, 2022. Stroudsburg: ACL, 2022: 272-278.
[15] JIAN S Y B, NAYAK T, MAJUMDER N, et al. Aspect sentiment triplet extraction using reinforcement learning[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management, New York, Oct 30, 2021. New York: ACM, 2021: 3603-3607.
[16] ZHANG W, LI X, DENG Y, et al. Towards generative aspect-based sentiment analysis[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, Aug 1-6, 2021. Stroudsburg: ACL, 2021: 504-510.
[17] 夏鸿斌, 李强, 肖奕飞. 用于方面情感三元组抽取的词对关系学习方法[J]. 模式识别与人工智能, 2022, 35(3): 262-270.
XIA H B, LI Q, XIAO Y F. Word-pair relation learning method for aspect sentiment triplet extraction[J]. Pattern Recognition and Artificial Intelligence, 2022, 35(3): 262-270.
[18] MIKOLOV T, SUTSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their compositionality[C]//Advances in Neural Information Processing Systems 26, Lake Tahoe, Dec 5-8, 2013: 3111-3119.
[19] PENNINGTON J, SOCHER R, MANNING C. GloVe: global vectors for word representation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, Doha, Oct 25-29, 2014. Stroudsburg: ACL, 2014: 1532-1543.
[20] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems?30,?Long?Beach,?Dec?4-9,?2017: 5998-6008.
[21] ZENG B, YANG H, XU R, et al. LCF: a local context focus mechanism for aspect-based sentiment classification[J]. Applied Sciences, 2019, 9(16): 3389.
[22] DOZAT T, MANNING C D. Deep biaffine attention for neural dependency parsing[J]. arXiv:1611.01734, 2016.
[23] ZHANG C, REN L, MA F, et al. Structural bias for aspect sentiment triplet extraction[C]//Proceedings of the 29th International Conference on Computational Linguistics, Gyeongju, Oct 12-17, 2022. Stroudsburg: ACL, 2022: 6736-6745.
[24] CHEN H, ZHAI Z, FENG F, et al. Enhanced multi-channel graph convolutional network for aspect sentiment triplet extraction[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics, Dublin, May 22-27, 2022. Stroudsburg: ACL, 2022: 2974-2985. |