[1] WANG Z, CHEN J, HOI S C H. Deep learning for image super-resolution: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(3): 1-22.
[2] 王容, 张永辉, 张健, 等. 基于CNN的图像超分辨率重建方法[J]. 计算机工程与设计, 2019, 40(6): 1654-1659.
WANG R, ZHANG Y H, ZHANG J, et al. Image super-resolution reconstruction based on CNN[J]. Computer Engi-neering and Design, 2019, 40 (6): 1654-1659.
[3] ZHU S, LI Y. Single image super-resolution under multi-frame method[J]. Signal, Image and Video Processing, 2019, 13(2): 331-339.
[4] DENG L, ZHOU Z, XU G, et al. TV2++: a novel spatial-temporal total variation for super resolution with exponential-type norm[J]. EURASIP Journal on Wireless Commu-nications and Networking, 2020, 16(4): 223-240.
[5] KHAN A, SOHAIL A, ZAHOORA U, et al. A survey of the recent architectures of deep convolutional neural networks[J]. Artificial Intelligence Review, 2020, 53(8): 5455-5516.
[6] ZHANG K, ZUO W M, ZHANG L. Deep plug-and-play super-resolution for arbitrary blur kernels[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pat-tern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 1671-1681.
[7] 席志红, 侯彩燕, 袁昆鹏, 等. 基于深层残差网络的加速图像超分辨率重建[J]. 光学学报, 2019, 39(2): 89-98.
XI Z H, HOU C Y, YUAN K P, et al. Super-resolution reconstruction of accelerated image based on deep residual network[J]. Acta Optica Sinica, 2019, 39(2): 89-98.
[8] 范佩佩, 董秀成, 李滔, 等. 基于非局部均值约束的深度图像超分辨率重建[J]. 计算机辅助设计与图形学学报, 2020, 32(10): 1671-1678.
FAN P P, DONG X C, LI T, et al. Super-resolution recon-struction of depth map based on non-local means constraint[J]. Journal of Computer-Aided Design & Computer Grap-hics, 2020, 32(10): 1671-1678.
[9] LIU Y, WANG Y C, LI N, et al. An attention-based app-roach for single image super resolution[C]//Proceedings of the 24th International Conference on Pattern Recognition, Beijing, Aug 20-24, 2018. Washington: IEEE Computer Society, 2018: 2777-2784.
[10] LEDIG C, THEIS L, HUSZáR F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 105-114.
[11] LI J C, FANG F M, MEI K F, et al. Multi-scale residual net-work for image super-resolution[C]//LNCS 11212: Proceed-ings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 517-532.
[12] HU X C, MU H Y, ZHANG X Y, et al. Meta-SR: a magni-fication-arbitrary network for super-resolution[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pat-tern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 1575-1584.
[13] 王斌, 刘洋, 唐胜, 等. 融合多模型和帧间信息的行人检测算法[J]. 计算机辅助设计与图形学学报, 2017, 29(3): 444-449.
WANG B, LIU Y, TANG S, et al. Pedestrian detection with fusion of multi-models and intra-frame information[J]. Jour-nal of Computer-Aided Design & Computer Graphics, 2017, 29(3): 444-449.
[14] ZHANG Y L, LI K P, LI K, et al. Image super-resolution using very deep residual channel attention networks[C]//LNCS 11211: Proceedings of the 15th European Conference on Com-puter Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 294-310.
[15] HAN B, NIU G, YU X R, et al. SIGUA: forgetting may make learning with noisy labels more robust[C]//Proceedings of the 37th International Conference on Machine Learning, Vie-nna, Jul 13-18, 2020: 4006-4016.
[16] PENG C, ZHANG X Y, YU G, et al. Large kernel matters—improve semantic segmentation by global convolutional net-work[C]//Proceedings of the 2017 IEEE Conference on Com-puter Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 1743-1751.
[17] LIM B, SON S, KIM H, et al. Enhanced deep residual net-works for single image super-resolution[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pat-tern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 1132-1140.
[18] LAI W S, HUANG J B, AHUJA N, et al. Fast and accurate image super-resolution with deep Laplacian pyramid net-works[J]. IEEE Transactions on Pattern Analysis and Mac-hine Intelligence, 2018, 41(11): 2599-2613.
[19] AGUSTSSON E, TIMOFTE R. NTIRE 2017 challenge on single image super-resolution: dataset and study[C]//Procee-dings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 1122-1131.
[20] ZHANG Y, FAN Q, BAO F, et al. Single-image super-resolution based on rational fractal interpolation[J]. IEEE Transactions on Image Processing, 2018, 27(8): 3782-3797.
[21] LI Z, YANG J L, LIU Z, et al. Feedback network for image super-resolution[C]//Proceedings of the 2019 IEEE Confe-rence on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 3867-3876.
[22] 李现国, 冯欣欣, 李建雄. 多尺度残差网络的单幅图像超分辨率重建[J]. 计算机工程与应用, 2021, 57(7): 215-221.
LI X G, FENG X X, LI J X. Sigle image super-resolution reconstruction based on multi-scale residual network[J]. Com-puter Engineering and Applications, 2021, 57(7): 215-221.
[23] LUGMAYR A, DaNELLJAN M, TIMOFTE R. NTIRE 2020 challenge on real-world image super-resolution: methods and results[C]//Proceedings of the 2020 IEEE Conference on Computer Vision and Pattern Recognition, Seattle, Jun 16-21, 2020. Washington: IEEE Computer Society, 2020: 2058-2076.
[24] PARK T, LIU M Y, WANG T C, et al. Semantic image synthesis with spatially-adaptive normalization[C]//Procee-dings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 2337-2346.
[25] HE Z, CAO Y, DU L, et al. MRFN: multi-receptive-field network for fast and accurate single image super-resolution[J]. IEEE Transactions on Multimedia, 2020, 22(4): 1042-1054. |