计算机科学与探索 ›› 2023, Vol. 17 ›› Issue (8): 1938-1948.DOI: 10.3778/j.issn.1673-9418.2204015

• 人工智能·模式识别 • 上一篇    下一篇

融合GCNN与GRU的异常实体识别方法

叶瀚,孙海春,李欣   

  1. 中国人民公安大学 信息网络安全学院,北京 102623
  • 出版日期:2023-08-01 发布日期:2023-08-01

Entity Anomaly Recognition Method Based on GCNN and GRU

YE Han, SUN Haichun, LI Xin   

  1. School of Information and Cyber Security, People's Public Security University of China, Beijing 102623, China
  • Online:2023-08-01 Published:2023-08-01

摘要: 当前的命名实体识别(NER)模型能够识别位于正确位置且符合语法表达的实体,却无法指出句子中的实体缺失与位于错误位置的实体,无法满足信息处理与归档分析中对于检测文本实体信息完整全面的要求。通过考察异常实体的识别依赖上下文相互联系语义特征的具体特点,提出以基于预训练语言模型的命名实体识别模型架构为基础,融合门控卷积神经网络(GCNN)与门控循环网络(GRU)的实体位置异常与实体缺失异常检测方法(NER-EAD)及其训练数据构造方法。其中门控卷积网络提取特定字符上下文特征联系以更好识别实体异常。融合卷积神经网络结构和门控循环神经网络的语义特征输出可全面提取正常实体与异常实体的特征,实现了正常、异常实体识别结果同时输出。实验表明NER-EAD在正常实体、实体位置异常和实体缺失异常的识别平均[F1]分别达到90.56%、85.56%和80.92%,超越了已有命名实体识别模型架构。最后通过消融实验证明了GCNN与GRU融合网络的语义特征提取能力。

关键词: 命名实体识别(NER), 门控卷积神经网络(GCNN), 门控循环网络(GRU), 异常检测

Abstract: Named entity recognition (NER) model can recognize the normal entities, but cannot provide any hints for the missing entity or the entity in the incorrect location, which cannot meet the extensive requirements on the text entities in the information processing and the archiving analysis field. Combined with the specific context characteristics of the entity anomaly recognition, a method for the entity location anomaly and the entity absence anomaly detection (NER-EAD) integrating GCNN (gated convolutional neural network) and GRU (gated recurrent unit) and its training data construction method are proposed, which is based on the structure of the named entity recognition model with the pre-trained language model. GCNN extracts more character context features to improve the model performance in identifying abnormal entities. The method integrates the semantic feature output of the convolutional neural network and the recurrent neural network to comprehensively extract the features of normal entities and the abnormal entities. Experiments show that NER-EAD reaches average F1 of 90.56%, 85.56% and 80.92% in the normal entity recognition, the entity location anomaly detection and the entity absence anomaly detection, respectively, surpassing the existing named entity recognition model architecture. Additionally, the ablation experiment proves the semantic feature extraction ability of the fusion network of GCNN and GRU.

Key words: named entity recognition (NER), gated convolutional neural network (GCNN), gated recurrent unit (GRU), abnormal detection