[1] NAKAMOTO S. Bitcoin: a peer-to-peer electronic cash system[J]. Decentralized Business Review, 2008: 21260.
[2] Litecoin[EB/OL]. [2022-03-30]. https://litecoin.org/.
[3] BUTERIN V. A next-generation smart contract and decentra-lized application platform[EB/OL]. [2022-03-30]. https://ethereum.org/en/whitepaper/.
[4] VOGELSTELLER F, BUTERIN V. Ethereum improvement proposals: EIP-20 token standard[EB/OL]. [2022-03-30]. https://eips.ethereum.org/EIPS/eip-20.
[5] ENTRIKEN W, SHIRLEY D, EVANS J, et al. Ethereum im-provement proposals: EIP-721 non-fungible token standard[EB/OL]. [2022-03-30]. https://eips.ethereum.org/EIPS/eip-721.
[6] 章志容, 李实, 彭添才. 一种跨链操作的风险评估方法:CN110519261B[P]. 2021-11-19.
ZHANG Z R, LI S, PENG T C. Risk assessment method for cross-chain operation: CN110519261B[P]. 2021-11-19.
[7] ZAMYATIN A, HARZ D, LIND J, et al. XCLAIM: trustless, interoperable, cryptocurrency-backed assets[C]//Proceedings of the 2019 IEEE Symposium on Security and Privacy, San Francisco, May 19-23, 2019. Piscataway: IEEE, 2019: 193-210.
[8] HERLIHY M. Atomic cross-chain swaps[C]//Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing, Egham, Jul 23-27, 2018. New York: ACM, 2018: 245-254.
[9] BACK A, CORALLO M, DASHJR L, et al. Enabling block-chain innovations with pegged sidechains[EB/OL]. (2014-10-22) [2022-03-30]. https://blockstream.com/sidechains.pdf.
[10] THOMAS S, SCHWARTZ E. A protocol for interledger payments[EB/OL]. [2022-03-30]. https://interledger.org/interledger.pdf.
[11] Decred-compatible cross-chain atomic swapping[EB/OL]. [2022-03-30]. https://github.com/decred/atomicswap.
[12] HOSP D, HOENISCH T, KITTIWONGSUNTHORN P. Comit-cryptographically-secure off-chain multi-asset instant tran-saction network[EB/OL]. [2022-03-30]. https://arxiv.org/ftp/arxiv/papers/1810/1810.02174.pdf.
[13] Interledger protocol V4[EB/OL]. [2022-03-30]. https://in-terledger.org/rfcs/0027-interledger-protocol-4.
[14] CULWICK A, METCALF D. The blocknet design specifi-cation[EB/OL]. [2022-03-30]. https://www.blocknet.co/wpcon-tent/uploads/2018/04/whitepaper.pdf.
[15] BUTERIN V. Chain interoperability[EB/OL]. [2022-03-30]. https://allquantor.at/blockchainbib/pdf/buterin2016chain.pdf.
[16] DILLEY J, POELSTRA A, WILKINS J, et al. Strong federa-tions: an interoperable blockchain solution to centralized third-party risks[J]. arXiv:1612.05491, 2016.
[17] KWON J, BUCHMAN E. Cosmos whitepaper[EB/OL]. [2022-03-30]. https://v1.cosmos.network/resources/whitepaper.
[18] WOOD G. Polkadot: vision for a heterogeneous multi-chain framework[EB/OL]. [2022-03-30]. https://assets.polkadot.network/Polkadot-whitepaper.pdf.
[19] SPOKE M, NE Team. Aion: enabling the decentralized Internet[EB/OL]. [2022-03-30]. https://aion.network/media/en-aion-networktechnical-introduction.pdf.
[20] TokenBridge??s documentation[EB/OL]. [2022-03-30]. https://docs.tokenbridge.net/.
[21] CHANDOLA V, BANERJEE A, KUMAR V. Anomaly de-tection: a survey[J]. ACM Computing Surveys, 2009, 41(3): 1-58.
[22] EDGEWORTH F Y. Xli. on discordant observations[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1887, 23(143): 364-375.
[23] HART P E, STORK D G, DUDA R O. Pattern classification[M]. Hoboken: Wiley, 2000.
[24] CHEN J, SATHE S, AGGARWAL C, et al. Outlier detection with autoencoder ensembles[C]//Proceedings of the 2017 SIAM International Conference on Data Mining, Houston, Apr 27-29, 2017. Philadelphia: SIAM, 2017: 90-98.
[25] RAMASWAMY S, RASTOGI R, SHIM K. Efficient algorithms for mining outliers from large data sets[C]//Proceedings of the 2000 ACM SIGMOD International Conference on Ma-nagement of Data, Dallas, May 15-18, 2000. New York: ACM, 2000: 427-438.
[26] ANGIULLI F, PIZZUTI C. Fast outlier detection in high dimensional spaces[C]//LNCS 2431: Proceedings of the Euro-pean Conference on Principles of Data Mining and Know-ledge Discovery, Helsinki, Aug 19-23, 2002. Berlin, Heidel-berg: Springer, 2002: 15-26.
[27] BREUNIG M M, KRIEGEL H P, NG R T, et al. LOF: identifying density-based local outliers[C]//Proceedings of the 2000 ACM SIGMOD International Conference on Ma-nagement of Data, Dallas, May 15-18, 2000. New York: ACM, 2000: 93-104.
[28] TAN P N, STEINBACH M, KUMAR V. Data mining intro-duction[M]. Beijing: People??s Posts and Telecommunications Publishing House, 2006.
[29] HARTIGAN J A, WONG M A. Algorithm AS 136: a k-means clustering algorithm[J]. Journal of the Royal Statisti-cal Society, Series C (Applied Statistics), 1979, 28(1): 100-108.
[30] GOLDSTEIN M, DENGEL A. Histogram-based outlier score (HBOS): a fast unsupervised anomaly detection algorithm[C]//Proceedings of the 35th Annual German Conference on AI, Saarbrücken, Sep 24-27, 2012. Berlin, Heidelberg:Springer, 2012: 59-63.
[31] KEOGH E, LIN J, FU A. HOT SAX: efficiently finding the most unusual time series subsequence[C]//Proceedings of the 5th IEEE International Conference on Data Mining, Houston, Nov 27-30, 2005. Washington: IEEE Computer Society, 2005: 226-233.
[32] HOCHREITER S, SCHMIDHUBER J. Long short-term me-mory[J]. Neural Computation, 1997, 9(8): 1735-1780.
[33] Transaction data of bEarn Fi (BscScan)[EB/OL]. [2022-03-30]. https://www.bscscan.com/tx/0x603b2bbe2a7d0877b225317-1735ff686a7caad866f6c0435c37b7b49e4bfd9a36c.
[34] Transaction data of bEarn Fi (Google docs)[EB/OL]. [2022-03-30]. https://docs.google.com/spreadsheets/d/1iZ7JjofR6z-RcJpMJ6NSpnUk5u26IIYTW8ZiTMxPvShI/edit#gid=0.
[35] Transaction data of ethereum[EB/OL]. [2022-03-30]. https://cn.etherscan.com/address/0xC8a65Fadf0e0dDAf421F28FEAb69-Bf6E2E589963.
[36] Transaction data of BSC[EB/OL]. [2022-03-30]. https://www.bscscan.com/address/0x0D6e286A7cfD25E0c01fEe9756765-D8033B32C71.
[37] Transaction data of polygon[EB/OL]. [2022-03-30]. https://polygonscan.com/address/0x5dc3603C9D42Ff184153a8a-9094a73d461663214. |