计算机科学与探索 ›› 2022, Vol. 16 ›› Issue (8): 1829-1841.DOI: 10.3778/j.issn.1673-9418.2201012
赵学武1, 王红梅1, 刘超慧1, 李玲玲+(), 薄树奎1, 冀俊忠2
收稿日期:
2022-01-05
修回日期:
2022-04-08
出版日期:
2022-08-01
发布日期:
2022-08-19
通讯作者:
+E-mail: 373413349@qq.com.作者简介:
赵学武(1983—),男,河南南阳人,博士,讲师,硕士生导师,CCF会员,主要研究方向为数据挖掘、机器学习、脑科学。基金资助:
ZHAO Xuewu1, WANG Hongmei1, LIU Chaohui1, LI Lingling+(), BO Shukui1, JI Junzhong2
Received:
2022-01-05
Revised:
2022-04-08
Online:
2022-08-01
Published:
2022-08-19
About author:
ZHAO Xuewu, born in 1983, Ph.D., lecturer, M.S. supervisor, member of CCF. His research interests include data mining, machine learning and brain science.Supported by:
摘要:
人脑功能划分是揭示人脑功能分离性的重要方式。然而,现有的大多数划分方法因不能较好地处理功能磁共振影像(fMRI)数据的高维性和低信噪比性,表现出搜索能力较弱和划分结果较差的问题。为了减轻此问题,提出一种基于人工水母搜索优化(AJSO)的人脑功能划分方法。该方法首先基于预处理的fMRI数据计算功能相关矩阵,并将其映射到低维空间。然后将食物编码为由多个功能簇中心构成的聚类解,利用改进型人工水母搜索优化算法搜索更优的食物,采用融入迭代停滞的时间控制机制调控人工水母执行主动运动或被动运动,以提高全局搜索能力;针对主动运动设计适应度引导的步长确定策略,增强人工水母搜索的科学性和针对性。最后根据最小距离原则得到相关矩阵中每行数据的簇标,并将其映射到相应的体素上。在真实fMRI数据上的实验表明:与其他一些划分方法相比,新方法不仅拥有较高的搜索能力,而且可得到具有更好空间结构和更强功能一致性的划分结果。这项研究将人工水母搜索优化算法应用于人脑功能划分,提供了一种更有效的人脑功能划分方法。
中图分类号:
赵学武, 王红梅, 刘超慧, 李玲玲, 薄树奎, 冀俊忠. 面向人脑功能划分的人工水母搜索优化算法[J]. 计算机科学与探索, 2022, 16(8): 1829-1841.
ZHAO Xuewu, WANG Hongmei, LIU Chaohui, LI Lingling, BO Shukui, JI Junzhong. Artificial Jellyfish Search Optimization Algorithm for Human Brain Functional Parcellation[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1829-1841.
Image | Sequence | TR/ms | No_s | FOV | No_v |
---|---|---|---|---|---|
F.Img | EPI | 2 000 | 33 | 200×200 | 200 |
S.Img | MPRAGE | 2 530 | 144 | 256×256 | 1 |
表1 fMRI数据扫描参数表
Table 1 Scanning parameters of fMRI data
Image | Sequence | TR/ms | No_s | FOV | No_v |
---|---|---|---|---|---|
F.Img | EPI | 2 000 | 33 | 200×200 | 200 |
S.Img | MPRAGE | 2 530 | 144 | 256×256 | 1 |
K | SC | AJSO | IAJSO | SAJSO | ISAJSO |
---|---|---|---|---|---|
2 | 72 234.77±4.37E-11 | 72 233.47±0 | 72 232.89±0 | 72 232.57±0 | 72 231.50±0 |
3 | 61 362.75±5.64E-01 | 61 358.00±8.06E-02 | 61 345.10±7.96E-02 | 61 101.62±1.41E-02 | 60 913.33±1.23E-02 |
4 | 50 915.47±1.94E-01 | 50 836.03±6.27E-02 | 50 761.07±1.03E-02 | 50 681.75±1.25E-02 | 50 648.13±9.58E-02 |
5 | 44 318.16±6.90E-01 | 43 933.13±4.09E-02 | 43 875.30±2.26E-02 | 44 820.60±2.17E-02 | 43 882.83±5.59E-02 |
6 | 40 282.39±6.81E-01 | 40 142.90±2.09E-03 | 40 089.67±2.99E-03 | 40 107.03±7.69E-03 | 40 083.43±1.02E-03 |
7 | 38 630.60±1.43E-02 | 38 381.83±1.14E-03 | 37 877.73±1.19E-03 | 37 143.86±1.14E-03 | 37 114.07±1.38E-04 |
8 | 35 277.22±1.35E-02 | 34 625.00±2.51E-04 | 34 513.73±1.97E-04 | 34 529.80±2.96E-04 | 34 497.03±1.76E-04 |
9 | 33 769.14±7.19E-02 | 32 984.13±2.47E-04 | 32 916.53±2.15E-04 | 32 967.47±2.85E-04 | 32 905.37±2.66E-05 |
表2 5个算法在不同划分数上的SSE平均值和标准差
Table 2 SSE means and standard deviation of 5 algorithms on different number of parcels
K | SC | AJSO | IAJSO | SAJSO | ISAJSO |
---|---|---|---|---|---|
2 | 72 234.77±4.37E-11 | 72 233.47±0 | 72 232.89±0 | 72 232.57±0 | 72 231.50±0 |
3 | 61 362.75±5.64E-01 | 61 358.00±8.06E-02 | 61 345.10±7.96E-02 | 61 101.62±1.41E-02 | 60 913.33±1.23E-02 |
4 | 50 915.47±1.94E-01 | 50 836.03±6.27E-02 | 50 761.07±1.03E-02 | 50 681.75±1.25E-02 | 50 648.13±9.58E-02 |
5 | 44 318.16±6.90E-01 | 43 933.13±4.09E-02 | 43 875.30±2.26E-02 | 44 820.60±2.17E-02 | 43 882.83±5.59E-02 |
6 | 40 282.39±6.81E-01 | 40 142.90±2.09E-03 | 40 089.67±2.99E-03 | 40 107.03±7.69E-03 | 40 083.43±1.02E-03 |
7 | 38 630.60±1.43E-02 | 38 381.83±1.14E-03 | 37 877.73±1.19E-03 | 37 143.86±1.14E-03 | 37 114.07±1.38E-04 |
8 | 35 277.22±1.35E-02 | 34 625.00±2.51E-04 | 34 513.73±1.97E-04 | 34 529.80±2.96E-04 | 34 497.03±1.76E-04 |
9 | 33 769.14±7.19E-02 | 32 984.13±2.47E-04 | 32 916.53±2.15E-04 | 32 967.47±2.85E-04 | 32 905.37±2.66E-05 |
图6 划分数 K为3和5时的划分图(图上数字为MRICron中切片的编号)
Fig.6 Parcellation maps when the number of parcels K is 3 and 5 (numbers on figure are number of slices in MRICron)
K | K-means | HC | GMM | SC | SSC |
---|---|---|---|---|---|
2 | -0.226 5±1.49E-01 | 0.029 4±3.47E-18 | 0.071 3±3.36E-01 | 0.404 4±5.55E-03 | -1.051 5±4.44E-16 |
3 | -1.078 2±4.07E-01 | -0.544 1±3.33E-16 | -0.800 0±4.98E-01 | -0.382 3±2.78E-02 | -1.463 2±0 |
4 | -1.730 4±3.75E-01 | -1.536 8±0 | -1.239 0±4.65E-01 | -1.205 9±2.22E-02 | -2.602 9±4.44E-16 |
5 | -2.245 3±3.58E-01 | -1.955 9±8.88E-16 | -1.787 1±4.67E-01 | -2.029 4±1.34E-02 | -3.617 6±2.66E-15 |
6 | -2.693 9±4.19E-01 | -2.544 1±1.33E-15 | -2.307 0±4.06E-01 | -2.438 7±1.32E-02 | -4.644 6±4.55E-02 |
7 | -3.129 9±4.22E-01 | -2.852 9±4.44E-16 | -2.580 1±4.53E-01 | -2.323 5±1.33E-02 | -4.703 9±1.97E-02 |
8 | -3.522 5±3.87E-01 | -3.308 8±2.22E-15 | -2.974 6±4.75E-01 | -2.808 8±2.22E-02 | -5.360 8±1.10E-01 |
9 | -3.681 1±3.35E-01 | -3.551 5±8.88E-16 | -3.301 5±3.68E-01 | -3.092 2±1.28E-02 | -5.524 0±1.78E-02 |
K | AJSO | IAJSO | SAJSO | ISAJSO | |
2 | 0.404 4±2.78E-05 | 0.404 4±2.78E-05 | 0.404 4±1.90E-05 | 0.404 4±1.03E-05 | |
3 | -0.367 7±4.01E-04 | -0.345 6±5.65E-04 | -0.338 2±8.97E-04 | -0.316 2±6.33E-04 | |
4 | -1.188 0±6.48E-03 | -1.184 3±7.81E-03 | -1.167 2±8.39E-03 | -1.117 6±1.04E-03 | |
5 | -1.723 4±2.70E-03 | -1.618 6±2.79E-03 | -1.697 8±2.58E-03 | -1.455 9±2.49E-03 | |
6 | -2.102 5±3.05E-03 | -1.879 4±3.29E-03 | -2.097 3±3.35E-03 | -1.994 1±2.93E-03 | |
7 | -2.198 5±2.13E-03 | -2.139 7±2.93E-03 | -2.007 0±2.65E-03 | -1.977 9±2.82E-03 | |
8 | -2.658 1±2.69E-03 | -2.602 7±3.68E-03 | -2.551 5±3.06E-03 | -2.492 6±3.54E-03 | |
9 | -3.051 5±4.21E-03 | -3.007 4±3.76E-03 | -2.963 2±3.86E-03 | -2.933 8±2.70E-03 |
表3 9个算法在不同划分数上的SM平均值和标准差
Table 3 SM means and standard deviation of 9 algorithms on different number of parcels
K | K-means | HC | GMM | SC | SSC |
---|---|---|---|---|---|
2 | -0.226 5±1.49E-01 | 0.029 4±3.47E-18 | 0.071 3±3.36E-01 | 0.404 4±5.55E-03 | -1.051 5±4.44E-16 |
3 | -1.078 2±4.07E-01 | -0.544 1±3.33E-16 | -0.800 0±4.98E-01 | -0.382 3±2.78E-02 | -1.463 2±0 |
4 | -1.730 4±3.75E-01 | -1.536 8±0 | -1.239 0±4.65E-01 | -1.205 9±2.22E-02 | -2.602 9±4.44E-16 |
5 | -2.245 3±3.58E-01 | -1.955 9±8.88E-16 | -1.787 1±4.67E-01 | -2.029 4±1.34E-02 | -3.617 6±2.66E-15 |
6 | -2.693 9±4.19E-01 | -2.544 1±1.33E-15 | -2.307 0±4.06E-01 | -2.438 7±1.32E-02 | -4.644 6±4.55E-02 |
7 | -3.129 9±4.22E-01 | -2.852 9±4.44E-16 | -2.580 1±4.53E-01 | -2.323 5±1.33E-02 | -4.703 9±1.97E-02 |
8 | -3.522 5±3.87E-01 | -3.308 8±2.22E-15 | -2.974 6±4.75E-01 | -2.808 8±2.22E-02 | -5.360 8±1.10E-01 |
9 | -3.681 1±3.35E-01 | -3.551 5±8.88E-16 | -3.301 5±3.68E-01 | -3.092 2±1.28E-02 | -5.524 0±1.78E-02 |
K | AJSO | IAJSO | SAJSO | ISAJSO | |
2 | 0.404 4±2.78E-05 | 0.404 4±2.78E-05 | 0.404 4±1.90E-05 | 0.404 4±1.03E-05 | |
3 | -0.367 7±4.01E-04 | -0.345 6±5.65E-04 | -0.338 2±8.97E-04 | -0.316 2±6.33E-04 | |
4 | -1.188 0±6.48E-03 | -1.184 3±7.81E-03 | -1.167 2±8.39E-03 | -1.117 6±1.04E-03 | |
5 | -1.723 4±2.70E-03 | -1.618 6±2.79E-03 | -1.697 8±2.58E-03 | -1.455 9±2.49E-03 | |
6 | -2.102 5±3.05E-03 | -1.879 4±3.29E-03 | -2.097 3±3.35E-03 | -1.994 1±2.93E-03 | |
7 | -2.198 5±2.13E-03 | -2.139 7±2.93E-03 | -2.007 0±2.65E-03 | -1.977 9±2.82E-03 | |
8 | -2.658 1±2.69E-03 | -2.602 7±3.68E-03 | -2.551 5±3.06E-03 | -2.492 6±3.54E-03 | |
9 | -3.051 5±4.21E-03 | -3.007 4±3.76E-03 | -2.963 2±3.86E-03 | -2.933 8±2.70E-03 |
K | K-means | HC | GMM | SC | SSC |
---|---|---|---|---|---|
2 | 0.798 9±3.32E-02 | 0.757 4±1.11E-16 | 0.703 8±1.31E-01 | 0.909 4±0 | 0.601 1±0 |
3 | 0.824 5±7.79E-02 | 0.881 1±5.55E-16 | 0.810 0±7.10E-02 | 0.901 2±4.44E-04 | 0.737 5±4.20E-16 |
4 | 0.846 6±4.09E-02 | 0.881 9±3.33E-16 | 0.830 6±4.92E-02 | 0.910 6±5.73E-03 | 0.771 2±3.14E-16 |
5 | 0.865 9±2.77E-02 | 0.888 7±1.11E-16 | 0.854 5±3.22E-02 | 0.892 7±4.34E-03 | 0.678 6±2.22E-16 |
6 | 0.872 8±2.59E-02 | 0.883 6±3.33E-16 | 0.867 4±3.12E-02 | 0.895 3±7.88E-03 | 0.657 2±4.50E-03 |
7 | 0.873 3±2.58E-02 | 0.895 0±6.66E-16 | 0.873 1±3.04E-02 | 0.911 1±1.01E-03 | 0.736 5±2.20E-03 |
8 | 0.877 1±2.25E-02 | 0.893 7±5.55E-16 | 0.888 1±1.38E-02 | 0.907 1±3.32E-03 | 0.729 1±1.22E-02 |
9 | 0.889 5±1.53E-02 | 0.897 4±5.55E-16 | 0.891 2±1.51E-02 | 0.909 4±4.62E-03 | 0.739 4±1.76E-03 |
K | AJSO | IAJSO | SAJSO | ISAJSO | |
2 | 0.909 4±5.55E-16 | 0.909 4±5.55E-16 | 0.910 0±1.28E-03 | 0.911 2±5.15E-04 | |
3 | 0.901 4±8.47E-04 | 0.902 1±1.03E-04 | 0.902 5±1.74E-04 | 0.902 6±1.09E-04 | |
4 | 0.911 7±5.30E-04 | 0.912 5±6.40E-04 | 0.912 6±5.06E-04 | 0.914 6±6.62E-04 | |
5 | 0.896 4±1.03E-02 | 0.898 9±1.34E-04 | 0.897 5±1.76E-04 | 0.905 8±1.04E-04 | |
6 | 0.902 1±1.37E-03 | 0.906 4±4.54E-03 | 0.906 2±1.59E-03 | 0.909 5±1.25E-03 | |
7 | 0.912 5±1.20E-03 | 0.913 6±1.56E-03 | 0.898 6±8.95E-03 | 0.912 4±1.39E-03 | |
8 | 0.912 3±1.50E-03 | 0.913 7±1.37E-03 | 0.891 4±1.33E-03 | 0.921 5±1.41E-03 | |
9 | 0.913 2±1.74E-03 | 0.913 9±4.27E-03 | 0.913 7±5.47E-03 | 0.916 1±1.45E-03 |
表4 9个算法在不同划分数上的SI平均值和标准差
Table 4 SI means and standard deviation of 9 algorithms on different number of parcels
K | K-means | HC | GMM | SC | SSC |
---|---|---|---|---|---|
2 | 0.798 9±3.32E-02 | 0.757 4±1.11E-16 | 0.703 8±1.31E-01 | 0.909 4±0 | 0.601 1±0 |
3 | 0.824 5±7.79E-02 | 0.881 1±5.55E-16 | 0.810 0±7.10E-02 | 0.901 2±4.44E-04 | 0.737 5±4.20E-16 |
4 | 0.846 6±4.09E-02 | 0.881 9±3.33E-16 | 0.830 6±4.92E-02 | 0.910 6±5.73E-03 | 0.771 2±3.14E-16 |
5 | 0.865 9±2.77E-02 | 0.888 7±1.11E-16 | 0.854 5±3.22E-02 | 0.892 7±4.34E-03 | 0.678 6±2.22E-16 |
6 | 0.872 8±2.59E-02 | 0.883 6±3.33E-16 | 0.867 4±3.12E-02 | 0.895 3±7.88E-03 | 0.657 2±4.50E-03 |
7 | 0.873 3±2.58E-02 | 0.895 0±6.66E-16 | 0.873 1±3.04E-02 | 0.911 1±1.01E-03 | 0.736 5±2.20E-03 |
8 | 0.877 1±2.25E-02 | 0.893 7±5.55E-16 | 0.888 1±1.38E-02 | 0.907 1±3.32E-03 | 0.729 1±1.22E-02 |
9 | 0.889 5±1.53E-02 | 0.897 4±5.55E-16 | 0.891 2±1.51E-02 | 0.909 4±4.62E-03 | 0.739 4±1.76E-03 |
K | AJSO | IAJSO | SAJSO | ISAJSO | |
2 | 0.909 4±5.55E-16 | 0.909 4±5.55E-16 | 0.910 0±1.28E-03 | 0.911 2±5.15E-04 | |
3 | 0.901 4±8.47E-04 | 0.902 1±1.03E-04 | 0.902 5±1.74E-04 | 0.902 6±1.09E-04 | |
4 | 0.911 7±5.30E-04 | 0.912 5±6.40E-04 | 0.912 6±5.06E-04 | 0.914 6±6.62E-04 | |
5 | 0.896 4±1.03E-02 | 0.898 9±1.34E-04 | 0.897 5±1.76E-04 | 0.905 8±1.04E-04 | |
6 | 0.902 1±1.37E-03 | 0.906 4±4.54E-03 | 0.906 2±1.59E-03 | 0.909 5±1.25E-03 | |
7 | 0.912 5±1.20E-03 | 0.913 6±1.56E-03 | 0.898 6±8.95E-03 | 0.912 4±1.39E-03 | |
8 | 0.912 3±1.50E-03 | 0.913 7±1.37E-03 | 0.891 4±1.33E-03 | 0.921 5±1.41E-03 | |
9 | 0.913 2±1.74E-03 | 0.913 9±4.27E-03 | 0.913 7±5.47E-03 | 0.916 1±1.45E-03 |
[1] | EICKHOFF S B, YEO B T T, GENON S. Imaging-based parcellations of the human brain[J]. Nature Reviews Neuroscience, 2018, 19(11): 672-686. |
[2] | 赵学武, 冀俊忠, 梁佩鹏. 面向fMRI数据的人脑功能划分[J]. 科学通报, 2016, 61(18): 2035-2052. |
ZHAO X W, JI J Z, LIANG P P. The human brain functional parcellation based on fMRI data[J]. Chinese Science Bulletin, 2016, 61(18): 2035-2052. | |
[3] | KIM J H, LEE J M, JO H J, et al. Defining functional SMA and pre-SMA subregions in human MFC using resting state fMRI: functional connectivity-based parcellation method[J]. NeuroImage, 2010, 49(3): 2375-2386. |
[4] | CAUDA F, D’AGATA F, SACCO K, et al. Functional connectivity of the insula in the resting brain[J]. NeuroImage, 2011, 55(1): 8-23. |
[5] | JUNG W H, JANG J H, PARK J W, et al. Unravelling the intrinsic functional organization of the human striatum: a parcellation and connectivity study based on resting-state FMRI[J]. PLoS One, 2014, 9(9): e106768. |
[6] | BOUKHDHIR A, ZHANG Y, MIGNOTTE M, et al. Unrave-ling reproducible dynamic states of individual brain functional parcellation[J]. Network Neuroscience, 2021, 5(1): 28-55. |
[7] | LIU X, EICKHOFF S B, CASPERS S, et al. Functional parcellation of human and macaque striatum reveals human-specific connectivity in the dorsal caudate[J]. NeuroImage, 2021, 235: 118006. |
[8] | BLUMENSATH T, JBABDI S, GLASSER M F, et al. Spatially constrained hierarchical parcellation of the brain with resting-state fMRI[J]. NeuroImage, 2013, 76: 313-324. |
[9] | CRADDOCK R C, JAMES G A, HOLTZHEIMER III P E, et al. A whole brain fMRI atlas generated via spatially constrained spectral clustering[J]. Human Brain Mapping, 2012, 33(8): 1914-1928. |
[10] | NEBEL M B, JOEL S E, MUSCHELLI J, et al. Disruption of functional organization within the primary motor cortex in children with autism[J]. Human Brain Mapping, 2014, 35(2): 567-580. |
[11] | MEJIA A F, NEBEL M B, SHOU H, et al. Improving reliability of subject-level resting-state fMRI parcellation with shrinkage estimators[J]. NeuroImage, 2015, 112: 14-29. |
[12] | REN Y, GUO L, GUO C C. A connectivity-based parcellation improved functional representation of the human cerebellum[J]. Scientific Reports, 2019, 9(1): 1-12. |
[13] | HU Y, LI X, WANG L, et al. T-distribution stochastic neighbor embedding for fine brain functional parcellation on rs-fMRI[J]. Brain Research Bulletin, 2020, 162(9): 199-207. |
[14] | CHENG H, LIU J. Concurrent brain parcellation and connectivity estimation via co-clustering of resting state fMRI data: a novel approach[J]. Human Brain Mapping, 2021, 42(8): 2477-2489. |
[15] | RYALI S, CHEN T, SUPEKAR K, et al. A parcellation scheme based on von Mises-Fisher distributions and Markov random fields for segmenting brain regions using resting-state fMRI[J]. NeuroImage, 2013, 65: 83-96. |
[16] | HONNORAT N, EAVANI H, SATTERTHWAITE T D, et al. GraSP: geodesic graph-based segmentation with shape priors for the functional parcellation of the cortex[J]. NeuroImage, 2015, 106: 207-221. |
[17] | JANSSEN R J, JYLÄNKI P, KESSELS R P C, et al. Probabilistic model-based functional parcellation reveals a robust, fine-grained subdivision of the striatum[J]. NeuroImage, 2015, 119: 398-405. |
[18] | 赵学武, 冀俊忠, 姚垚. 基于免疫克隆选择算法搜索GMM的脑岛功能划分[J]. 浙江大学学报(工学版), 2017, 51(12): 2320-2331. |
ZHAO X W, JI J Z, YAO Y. Insula functional parcellation by searching Gaussian mixture model (GMM) using immune clonal selection (ICS) algorithm[J]. Journal of Zhejiang University (Engineering Science), 2017, 51(12): 2320-2331. | |
[19] | BLUMENSATH T, BEHRENS T E J, SMITH S M. Resting-state FMRI single subject cortical parcellation based on region growing[C]// Proceedings of the 15th International Conference on Medical Image Computing and Computer-Assisted Intervention, Nice, Oct 1-5, 2012. Berlin: Springer, 2012: 188-195. |
[20] | BELLEC P, PERLBARG V, JBABDI S, et al. Identification of large-scale networks in the brain using fMRI[J]. NeuroImage, 2006, 29(4): 1231-1243. |
[21] | BLUMENSATH T, JBABDI S, GLASSER M F, et al. Spatially constrained hierarchical parcellation of the brain with resting-state fMRI[J]. NeuroImage, 2013, 76: 313-324. |
[22] | HALE J R, MAYHEW S D, MULLINGER K J, et al. Comparison of functional thalamic segmentation from seed-based analysis and ICA[J]. NeuroImage, 2015, 114: 448-465. |
[23] | NOMI J S, FARRANT K, DAMARAJU E, et al. Dynamic functional network connectivity reveals unique and overlapping profiles of insula subdivisions[J]. Human Brain Mapping, 2016, 37(5): 1770-1787. |
[24] | DUFF E P, TRACHTENBERG A J, MACKAY C E, et al. Task-driven ICA feature generation for accurate and interpretable prediction using fMRI[J]. NeuroImage, 2012, 60(1): 189-203. |
[25] | KAZEMIVASH B, CALHOUN V D. BPARC:a novel spatio-temporal (4D) data-driven brain parcellation scheme based on deep residual networks[C]// Proceedings of the 2020 IEEE 20th International Conference on Bioinformatics and Bioengineering, Cincinnati, Oct 26-28, 2020. Piscataway: IEEE, 2020: 1071-1076. |
[26] | FAN L, ZHONG Q, QIN J, et al. Brain parcellation driven by dynamic functional connectivity better capture intrinsic network dynamics[J]. Human Brain Mapping, 2021, 42(5): 1416-1433. |
[27] | MISHRA A, ROGERS B P, CHEN L M, et al. Functional connectivity-based parcellation of amygdala using self-organized mapping: a data driven approach[J]. Human Brain Mapping, 2014, 35(4): 1247-1260. |
[28] | GRANDE-BARRETO J. Partial volume segmentation in magnetic resonance imaging (MRI)[D]. Puebla: National Institute for Astrophysics Optics and Electronics, 2017. |
[29] | CHOU J S, TRUONG D N. A novel metaheuristic optimizer inspired by behavior of jellyfish in ocean[J]. Applied Mathematics and Computation, 2021, 389(2): 125535. |
[30] | ABDEL-BASSET M, MOHAMED R, ABOUHAWWASH M, et al. An improved jellyfish algorithm for multilevel thresholding of magnetic resonance brain image segmentations[J]. Computers, Materials and Continua, 2021, 68(3): 2961-2977. |
[31] | FARHAT M, KAMEL S, ATALLAH A M, et al. Optimal power flow solution based on jellyfish search optimization considering un certainty of renewable energy sources[J]. IEEE Access, 2021, 9: 100911-100933. |
[32] | 朱佳莹, 高茂庭. 融合粒子群与改进蚁群算法的AUV路径规划算法[J]. 计算机工程与应用, 2021, 57(6): 267-273. |
ZHU J Y, GAO M T. AUV path planning based on particle swarm optimization and improved ant colony optimization[J]. Computer Engineering and Applications, 2021, 57(6): 267-273. | |
[33] | 胡晓敏, 王明丰, 张首荣, 等. 用于文本聚类的新型差分进化粒子群算法[J]. 计算机工程与应用, 2021, 57(4): 61-67. |
HU X M, WANG M F, ZHANG S R, et al. New differential evolution with particle swarm optimization algorithm for text clustering[J]. Computer Engineering and Applications, 2021, 57(4): 61-67. | |
[34] | 张晗, 杨继斌, 张继业, 等. 基于多种群萤火虫算法的车载燃料电池直流微电网能量管理优化[J]. 中国电机工程学报, 2021, 41(3): 13-19. |
ZHANG H, YANG J B, ZHANG J Y, et al. Multiple-population firefly algorithm-based energy management strategy for vehicle-mounted fuel cell DC microgrid[J]. Proceedings of the CSEE, 2021, 41(3): 13-19. | |
[35] | 章呈瑞, 柯鹏, 尹梅. 改进人工蜂群算法及其在边缘计算卸载的应用[J]. 计算机工程与应用, 2022, 58(7): 150-161. |
ZHANG C R, KE P, YIN M. Improved artificial bee colony algorithm and its application in edge computing offloading[J]. Computer Engineering and Applications, 2022, 58(7): 150-161. | |
[36] | ZHANG Y, CASPERS S, FAN L, et al. Robust brain parcellation using sparse representation on resting-state fMRI[J]. Brain Structure and Function, 2015, 220(6): 3565-3579. |
[37] | CHENG H, WU H, FAN Y. Optimizing affinity measures for parcellating brain structures based on resting state fMRI data: a validation on medial superior frontal cortex[J]. Journal of Neuroscience Methods, 2014, 237(11): 90-102. |
[38] | WANG J, JU L, WANG X. An edge-weighted centroidal voronoi tessellation model for image segmentation[J]. IEEE Transactions on Image Processing, 2009, 18(8): 1844-1858. |
[1] | 刘辰,肖志勇,吴鑫鑫. 三维卷积网络在脑海马体分割中的应用[J]. 计算机科学与探索, 2020, 14(3): 493-501. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||