计算机科学与探索 ›› 2022, Vol. 16 ›› Issue (8): 1829-1841.DOI: 10.3778/j.issn.1673-9418.2201012

• 人工智能 • 上一篇    下一篇

面向人脑功能划分的人工水母搜索优化算法

赵学武1, 王红梅1, 刘超慧1, 李玲玲+(), 薄树奎1, 冀俊忠2   

  1. 1. 郑州航空工业管理学院 智能工程学院,郑州 450046
    2. 北京工业大学 信息学部 计算机学院,北京 100124
  • 收稿日期:2022-01-05 修回日期:2022-04-08 出版日期:2022-08-01 发布日期:2022-08-19
  • 通讯作者: +E-mail: 373413349@qq.com.
  • 作者简介:赵学武(1983—),男,河南南阳人,博士,讲师,硕士生导师,CCF会员,主要研究方向为数据挖掘、机器学习、脑科学。
    王红梅(1976—),女,河南镇平人,硕士,副教授,主要研究方向为数据库技术、多媒体技术。
    刘超慧(1981—),男,河南项城人,硕士,副教授,硕士生导师,主要研究方向为机器学习、资源推荐。
    李玲玲(1973—),女,河南开封人,博士,教授,教育部新世纪人才奖获得者,主要研究方向为计算机视觉、模式识别。
    薄树奎(1976—),男,河北唐山人,博士,教授,主要研究方向为信息提取、模式识别、图像处理。
    冀俊忠(1969—),男,博士,教授,博士生导师,主要研究方向为机器学习、计算智能、生物信息学、脑科学。
  • 基金资助:
    河南省科技攻关项目(202102210164);河南省科技攻关项目(202102210341);河南省科技攻关项目(212102210077);河南省科技攻关项目(202102210399);河南省科技攻关项目(212102210518);河南省科技攻关项目(222102210292);河南省科技攻关项目(192102210283);国家自然科学基金(U1904119);河南省高等学校重点科研项目基础研究计划(21A520047);河南省高等学校重点科研项目基础研究计划(20A520041);河南省高等学校重点科研项目基础研究计划(20A520040);国家大学生创新创业训练计划项目(202110485023);河南省教育科学十三五规划项目(2020YB0149)

Artificial Jellyfish Search Optimization Algorithm for Human Brain Functional Parcellation

ZHAO Xuewu1, WANG Hongmei1, LIU Chaohui1, LI Lingling+(), BO Shukui1, JI Junzhong2   

  1. 1. School of Intelligent Engineering, Zhengzhou University of Aeronautics, Zhengzhou 450046, China
    2. College of Computer in Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
  • Received:2022-01-05 Revised:2022-04-08 Online:2022-08-01 Published:2022-08-19
  • About author:ZHAO Xuewu, born in 1983, Ph.D., lecturer, M.S. supervisor, member of CCF. His research interests include data mining, machine learning and brain science.
    WANG Hongmei, born in 1976, M.S., associate professor. Her research interests include database technology and multimedia technology.
    LIU Chaohui, born in 1981, M.S., associate professor, M.S. supervisor. His research interests include machine learning and resource recommendation.
    LI Lingling, born in 1973, Ph.D., professor, a winner of new century talent by the Ministry of Education of China. Her research interests include computer vision and pattern recognition.
    BO Shukui, born in 1976, Ph.D., professor. His research interests include information extraction, pattern recognition and image processing.
    JI Junzhong, born in 1969, Ph.D., professor, Ph.D. supervisor. His research interests include machine learning, computational intelligence, bio-informatics and brain science.
  • Supported by:
    the Key Technologies Research and Development Program of Henan Province(202102210164);the Key Technologies Research and Development Program of Henan Province(202102210341);the Key Technologies Research and Development Program of Henan Province(212102210077);the Key Technologies Research and Development Program of Henan Province(202102210399);the Key Technologies Research and Development Program of Henan Province(212102210518);the Key Technologies Research and Development Program of Henan Province(222102210292);the Key Technologies Research and Development Program of Henan Province(192102210283);the National Natural Science Foundation of China(U1904119);the Basic Research Plan of Key Scientific Research Projects of Henan Universities(21A520047);the Basic Research Plan of Key Scientific Research Projects of Henan Universities(20A520041);the Basic Research Plan of Key Scientific Research Projects of Henan Universities(20A520040);the National College Students’ Innovation and Entrepreneurship Training Program(202110485023);the 13th Five Year Plan of Educational Science in Henan Province(2020YB0149)

摘要:

人脑功能划分是揭示人脑功能分离性的重要方式。然而,现有的大多数划分方法因不能较好地处理功能磁共振影像(fMRI)数据的高维性和低信噪比性,表现出搜索能力较弱和划分结果较差的问题。为了减轻此问题,提出一种基于人工水母搜索优化(AJSO)的人脑功能划分方法。该方法首先基于预处理的fMRI数据计算功能相关矩阵,并将其映射到低维空间。然后将食物编码为由多个功能簇中心构成的聚类解,利用改进型人工水母搜索优化算法搜索更优的食物,采用融入迭代停滞的时间控制机制调控人工水母执行主动运动或被动运动,以提高全局搜索能力;针对主动运动设计适应度引导的步长确定策略,增强人工水母搜索的科学性和针对性。最后根据最小距离原则得到相关矩阵中每行数据的簇标,并将其映射到相应的体素上。在真实fMRI数据上的实验表明:与其他一些划分方法相比,新方法不仅拥有较高的搜索能力,而且可得到具有更好空间结构和更强功能一致性的划分结果。这项研究将人工水母搜索优化算法应用于人脑功能划分,提供了一种更有效的人脑功能划分方法。

关键词: 人脑功能划分, 人工水母搜索优化算法(AJSO), 融入迭代停滞的时间控制机制, 适应度引导的步长确定策略, 海马

Abstract:

Human brain function parcellation is an important way to reveal the separation of brain functions. However, most of the existing parcellation methods can not deal with the high dimension and low signal-to-noise ratio of functional magnetic resonance imaging (fMRI) data, so they show the problem of weaker search ability and poorer parcellation results. To alleviate this problem, a human brain functional parcellation method based on artificial jellyfish search optimization (AJSO) algorithm is proposed. Firstly, a functional correlation matrix is calculated based on the preprocessed fMRI data and mapped to a low-dimensional space. Then, a food is encoded as a cluster solution composed of multiple functional cluster centers and the improved AJSO is used to search for better food. The time control mechanism integrated with iterative stagnation is used to control the artificial jellyfish to perform active or passive motion, so as to improve the global search ability. Step size determination strategy guided by fitness is designed for active movement to enhance scientific and targeted search of artificial jellyfish. Finally, according to the principle of minimum distance, the cluster label of each row data in the correlation matrix is obtained and mapped to the corresponding voxels. Experiments on real fMRI data show that compared with other partitioning methods, the new method not only has higher searching ability, but also can obtain better spatial structures and stronger functional consistency. In this study, artificial jellyfish search optimization algorithm is applied to brain functional parcellation, which provides a more effective method of brain functional parcellation.

Key words: human brain functional parcellation, artificial jellyfish search optimization (AJSO) algorithm, time control mechanism with iteration stagnation, fitness-guided step size determination strategy, hippocampus

中图分类号: