[1] |
KROGH A S, VEDELSBY J. Neural network ensembles, cross validation and active learning[C]// Advances in Neural Information Processing Systems 7, Denver, 1994. Cambridge:MIT Press, 1994: 231-238.
|
[2] |
HASTIE T, TIBSHIRANI R, FRIEDMAN J. The elements of statistical learning[M]. Berlin, Heidelberg: Springer, 2007.
|
[3] |
BROWN G. An information theoretic perspective on multiple classifier systems[C]// LNCS 5519: Proceedings of the 8th International Workshop on Multiple Classifier Systems, Reyk-javik, Jun 10-12, 2009. Berlin, Heidelberg: Springer, 2009: 344-353.
|
[4] |
ZHOU Z H, LI N. Multi-information ensemble diversity[C]// LNCS 5997: Proceedings of the 9th International Workshop on Multiple Classifier Systems, Cairo, Apr 7-9, 2010. Berlin, Heidelberg: Springer, 2010: 134-144.
|
[5] |
YU Y, LI Y F, ZHOU Z H. Diversity regularized machine[C]// Proceedings of the 22nd International Joint Conference on Artificial Intelligence, Barcelona, Jul 16-22, 2011. Menlo Park: AAAI, 2011: 1603-1608.
|
[6] |
BREIMAN L. Bagging predicators[J]. Machine Learning, 1996, 24(2): 123-140.
|
[7] |
FREUND Y, SCHAPIRE R E. A desicion-theoretic genera-lization of on-line learning and an application to Boosting[J]. Journal of Computer and System Sciences, 1995, 55: 119-139.
|
[8] |
GOPIKA D, AZHAGUSUNDARN B. An analysis on ensem-ble methods in classification tasks[J]. International Journal of Advanced Research in Computer and Communication Engineering, 2014, 3(7): 7423-7427.
|
[9] |
ZHAO X G, WANG G, BI X, et al. XML document classi-fication based on ELM[J]. Neurocomputing, 2011, 74(16): 2444-2451.
|
[10] |
JIANG Y L, SHEN Y F, LIU Y, et al. Multiclass AdaBoost ELM and its application in LBP based face recognition[J]. Mathematical Problems in Engineering, 2015: 918105.
|
[11] |
LI M, XIAO P L, ZHANG J. Text classification based on ensemble extreme learning machine[J]. arXiv:1805.06525, 2018.
|
[12] |
HUANG G B, ZHU Q Y, SIEW C K. Extreme learning ma-chine: a new learn ing scheme for feedforward neural net-works[C]// Proceedings of the 2004 IEEE International Joint Conference on Neural Networks, Budapest, Jul 25-29, 2004. Piscataway: IEEE, 2004: 1-5.
|
[13] |
CAO J W, ZHANG K, LUO M X, et al. Extreme learning machine and adaptive sparse representation for image classi-fication[J]. Neural Networks, 2016, 81: 91-102.
|
[14] |
左鹏玉, 王士同. 无逆矩阵在线序列极限学习机[J]. 计算机科学与探索, 2020, 14(1): 117-124.
|
|
ZUO P Y, WANG S T. Inverse-matrix-free online sequen-tial extreme learning machine[J]. Journal of Frontiers of Com-puter Science and Technology, 2020, 14(1): 117-124.
|
[15] |
于化龙, 祁云嵩, 杨习贝, 等. 类不平衡模糊加权极限学习机算法研究[J]. 计算机科学与探索, 2017, 11(4): 619-632.
|
|
YU H L, QI Y S, YANG X B, et al. Research on class imbalance fuzzy weighted extreme learning machine algori-thm[J]. Journal of Frontiers of Computer Science and Tec-hnology, 2017, 11(4): 619-632.
|
[16] |
MICHE Y, SORJAMAA A, BAS P, et al. OP-ELM: optimally-pruned extreme learning machine[J]. IEEE Transactions on Neural Networks, 2010, 21(1): 158-162.
|
[17] |
KUNCHEVA L I, WHITAKER C J, SHIPP C A, et al. Limits on the majority vote accuracy in classifier fusion[J]. Pattern Analysis & Applications, 2003, 6(1): 22-31.
|
[18] |
HO T K. The random subspace method for constructing decision forests[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(8): 832-832.
|
[19] |
GIACINTO G, ROLI F. Design of effective neural network ensembles for image classification purposes[J]. Image and Vision Computing, 2001, 19(9/10): 699-707.
|
[20] |
DIETTERICH T G. An experimental comparison of three methods for constructing ensembles of decision trees: Bag-ging, Boosting, and randomization[J]. Machine Learning, 2000, 40(2): 139-157.
|
[21] |
LUO Z Q, TSENG P. On the convergence of the coordinate descent method for convex differentiable minimization[J]. Journal of Optimization Theory and Applications, 1992, 72(1): 7-35.
|
[22] |
BONAB H, CAN F. Less Is More: a comprehensive frame-work for the number of components of ensemble classifiers[J]. IEEE Transactions on Neural Networks and Learning Sys-tems, 2019, 30(9): 2735-2745.
|
[23] |
JOHN A C. Classical and modern regression with applica-tions[J]. Technometrics, 1987, 29(3): 377-378.
|
[24] |
VAN HEESWIJK M, MICHE Y. Binary/ternary extreme learning machines[J]. Neurocomputing, 2015, 149: 187-197.
|
[25] |
李森林, 邓小武. 基于二参数的BP神经网络算法改进与应用[J]. 河北科技大学学报, 2010, 31(5): 447-450.
|
|
LI S L, DENG X W. Improvement and application of BP algorithm with two arguments in neural networks[J]. Jour-nal of Hebei University of Science and Technology, 2010, 31(5): 447-450.
|