[1] HUANG G B, ZHU Q Y, SIEW C K. Extreme learning mach-ine: a new learning scheme of feedforward neural networks[J]. Neural Networks, 2004, 2: 985-990.
[2] HUANG Z, YU Y, GU J, et al. An efficient method for traffic sign recognition based on extreme learning machine[J]. IEEE Transactions on Cybernetics, 2016, 47(4): 920-933.
[3] HUANG G B. Extreme learning machine: theory and appli-cations[J]. Neurocomputing, 2006, 70: 489-501.
[4] IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[J]. arXiv:1502.03167, 2015.
[5] ZUO P Y, WANG S T. Inverse-matrix-free online sequential extreme learning machine[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(1): 117-124.
左鹏玉, 王士同. 无逆矩阵在线序列极限学习机[J]. 计算机科学与探索, 2020, 14(1): 117-124.
[6] YU H L, QI Y S, YANG X B, et al. Research on class imbal-ance fuzzy weighted extreme learning machine algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2017, 11(4): 619-632.
于化龙, 祁云嵩, 杨习贝, 等. 类不平衡模糊加权极限学习机算法研究[J]. 计算机科学与探索, 2017, 11(4): 619-632.
[7] LIU X, LIN S B, FANG J, et al. Is extreme learning machine feasible? A theoretical assessment (Part I)[J]. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(1): 7-20.
[8] BISHOP C M. Pattern recognition and machine learning[M]. Berlin, Heidelberg: Springer, 2006.
[9] LUO X, YANG X N, JIANG C W, et al. Timeliness online regularized extreme learning machine[J]. International Journal of Machine Learning and Cybernetics, 2018, 9(3): 465-476.
[10] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[C]//Proceedings of the 26th Annual Conference on Neural Infor-mation Processing Systems, Lake Tahoe, Dec 3-6, 2012. Red Hook: Curran Associates, 2012: 1106-1114.
[11] HE K M, ZHANG X Y, REN S Q, et al. Delving deep into rectifiers: surpassing human-level performance on imagenet classification[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Dec 7-13, 2015.Washington: IEEE Computer Society, 2015: 1026-1034.
[12] XU B, WANG N, CHEN T, et al. Empirical evaluation of rectified activations in convolutional network[J]. arXiv:1505.00853, 2015.
[13] ZHANG L, ZHANG D. Evolutionary cost-sensitive extreme learning machine[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 28(12): 3045-3060.
[14] HUANG G B, DING X, ZHOU H. Optimization method based extreme learning machine for classification[J]. Neurocom-puting, 2010, 74: 155-163.
[15] LIU X, WANG L, HUANG G B, et al. Multiple kernel extreme learning machine[J]. Neurocomputing, 2015, 149: 253-264.
[16] CAO J W, ZHANG K, YONG H W, et al. Extreme learning machine with affine transformation inputs in an activation function[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(7): 2093-2107.
[17] HAN F. Improved learning algorithms of SLFN for appro-ximating periodic function[C]//LNCS 5227: Proceedings of the 4th International Conference on Intelligent Computing, Shanghai, Sep 15-18, 2008. Berlin, Heidelberg: Springer,2008: 654-660.
[18] HUANG G B. What are extreme learning machines? Filling the gap between Frank Rosenblatt??s dream and John von Neumann??s puzzle[J]. Cognitive Computation, 2015, 7(3): 263-278.
[19] YE Z, KIM M K. Predicting electricity consumption in a building using an optimized back-propagation and Levenberg-Marquardt back-propagation neural network: case study of a shopping mall in China[J]. Sustainable Cities and Society, 2018, 42: 176-183.
[20] HUANG G B, SIEW C K. Extreme learning machine with randomly assigned RBF kernels[J]. International Journal of Information Technology, 2005, 11(1): 16-24.
[21] LU S Y, LU Z H, WANG S H, et al. Review of extreme learning machine[J]. Measurement & Control Technology, 2018, 37(10): 3-9.
陆思源, 陆志海, 王水花, 等. 极限学习机综述[J]. 测控技术, 2018, 37(10):3-9.
[22] XU R, LIANG X, QI J S, et al. Advances and trends in extreme learning machine[J]. Chinese Journal of Computers, 2019, 42(7): 1640-1670.
徐睿, 梁循, 齐金山, 等. 极限学习机前沿进展与趋势[J]. 计算机学报, 2019, 42(7): 1640-1670.
[23] LIU B, XIA S X, MENG F R, et al. Manifold regularized extreme learning machine[J]. Neural Computing and Appli-cations, 2016, 27(2): 255-269.
[24] YANG C, ZHU X, AHMAD Z, et al. Design of incremental echo state network using leave-one-out cross-validation[J]. IEEE Access, 2018, 6: 74874-74884.
[25] YANG M, MIN G, YANG W, et al. Software rejuvenation in cluster computing systems with dependency between nodes[J]. Computing, 2014, 96(6): 503-526.
[26] JIMENEZ L O, LANDGREBE D. High dimensional feature reduction via projection pursuit[C]//Proceedings of IGARSS??94-1994 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, Aug 8-12, 1994. Piscataway: IEEE, 1994.
[27] HUANG R, HE M Y, YANG S J. A margin based feature extraction algorithm for the small sample size problem[J]. Chinese Journal of Computers, 2007, 30(7): 1173-1178.
黄睿, 何明一, 杨少军. 一种适用于小样本问题的基于边界的特征提取算法[J]. 计算机学报, 2007, 30(7): 1173-1178.
[28] BIAN Z Q. Pattern recognition[M]. Beijing: Tsinghua Uni-versity Press, 2000.
边肇祺. 模式识别[M]. 北京: 清华大学出版社, 2000.
[29] CAO J, ZHANG K, LUO M, et al. Extreme learning machine and adaptive sparse representation for image class-ification[J]. Neural Networks, 2016, 81: 91-102. |