[1] SAEYS Y, INZA I, LARRA?AGA P, et al. A review of feature selection techniques in bioinformatics[J]. Bioinformatics, 2007, 23(19): 2507-2517.
[2] ZHANG Y D, HUO Y K, WU L N, et al. A review of dim-ension reduction techniques and methods[J]. Journal of Sichuan Ordnance, 2010, 31(10): 1-7.
张煜东, 霍元铠, 吴乐南, 等. 降维技术与方法综述[J]. 四川兵工学报, 2010, 31(10): 1-7.
[3] LI M, KAMIL M. Research on feature selection method and algorithm[J]. Computer Technology and Development, 2013, 23(12): 16-21.
李敏, 卡米力·木依丁. 特征选择方法与算法的研究[J]. 计算机技术与发展, 2013, 23(12): 16-21.
[4] HAMEDMOGHADAM H, JALILI M, YU X. An opinion formation based binary optimization approach for feature selection[J]. Physica A Statistical Mechanics & Its Applications, 2018, 491: 142-152.
[5] WEI J, ZHANG R, YU Z, et al. A BPSO-SVM algorithm based on memory renewal and enhanced mutation mechanisms for feature selection[J]. Applied Soft Computing, 2017, 58(1): 176-192.
[6] GHEYAS I A, SMITH L S. Feature subset selection in large dimensionality domains[J]. Pattern Recognition, 2010, 43(1): 5-13.
[7] LIU H, MOTODA H. Computational methods of feature sele-ction[M]. Boca Raton: CRC Press, 2007.
[8] ZHANG Q W, WEI Y C. Particle swarm optimization with independent adaptive parameter adjustment[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(4): 637-648.
张其文, 尉雅晨. 独立自适应调整参数的粒子群优化算法[J]. 计算机科学与探索, 2020, 14(4): 637-648.
[9] ZHANG D H, YOU X M, LIU S. Dynamic grouping ant colony algorithm combined with cat swarm optimization[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(5): 880-891.
张德惠, 游晓明, 刘升. 融合猫群算法的动态分组蚁群算法[J]. 计算机科学与探索, 2020, 14(5): 880-891.
[10] ZHANG Z C, LIU S Y. Firefly algorithm based on topology improvement and crossover strategy[J]. Computer Engineering and Applications, 2019, 55(7): 1-8.
张哲辰, 刘三阳. 基于拓扑改进与交叉策略的萤火虫算法[J]. 计算机工程与应用, 2019, 55(7): 1-8.
[11] YANG J, HONAVAR V. Feature subset selection using a genetic algorithm[J]. IEEE Intelligent Systems, 1998, 13(2): 44-49.
[12] SREEJA N K, SANKAR A. Pattern matching based classification using ant colony optimization based feature selection[J]. Applied Soft Computing, 2015, 31: 91-102.
[13] VIEIRA S M, MENDON?A L F, FARINHA G J, et al. Modified binary PSO for feature selection using SVM applied to mortality prediction of septic patients[J]. Applied Soft Computing, 2013, 13(8): 3494-3504.
[14] SAREMI S, MIRJALILI S, LEWIS A. Grasshopper optimization algorithm: theory and application[J]. Advances in Engineering Software, 2017, 105: 30-47.
[15] TUMULURU P, RAVI B. GOA-based DBN: grasshopper optimization algorithm-based deep belief neural networks for cancer classification[J]. International Journal of Applied Engineering Research, 2017, 12(24): 14218-14231.
[16] MAFARJA M, ALJARAH I, HEIDARI A A, et al. Evolutionary population dynamics and grasshopper optimization approaches for feature selection problems[J]. Knowledge-Based Systems, 2018, 145: 24-45.
[17] LIAO L, ZHOU Y. A neighborhood centroid opposition-based grasshopper optimization algorithm[J]. Journal of Physics Conference, 2019, 1176(3): 32-44.
[18] FATHY A. Recent meta-heuristic grasshopper optimization algorithm for optimal reconfiguration of partially shaded PV array[J]. Solar Energy, 2018, 171: 638-651.
[19] LAL D, BARISAL A. Grasshopper algorithm optimized fra-ctional order fuzzy PID frequency controller for hybrid power systems[J]. Recent Advances in Electrical & Electronic Engineering, 2019, 12(6): 519-531.
[20] YAN X, YE C M. Grasshopper optimization algorithm for job-shop scheduling problem[J]. Computer Engineering and Applications, 2019, 55(6): 257-264.
闫旭, 叶春明. 混合蝗虫优化算法求解作业车间调度问题[J]. 计算机工程与应用, 2019, 55(6): 257-264.
[21] LI Y Z, GU L. Grasshopper optimization algorithm based on curve adaptive and simulated annealing[J]. Application Research of Computers, 2019, 36(12): 3637-3643.
李洋州, 顾磊. 基于曲线自适应和模拟退火的蝗虫优化算法[J]. 计算机应用研究, 2019, 36(12): 3637-3643.
[22] DUAN Q Y, GUPTA V K, SOROOSHIAN S. Shuffled complex evolution approach for effective and efficient global minimi-zation[J]. Journal of Optimization Theory & Applications, 1993, 76(3): 501-521.
[23] HUANG X, MO H M, ZHAO Z G, et al. Research on discrete enhanced fireworks algorithm and kNN in feature selection[J]. Computer Engineering and Applications, 2020, 56(16): 112-117.
黄欣, 莫海淼, 赵志刚, 等. 离散型增强烟花算法和kNN在特征选择中的研究[J]. 计算机工程与应用, 2020, 56(16): 112-117.
[24] BHARTI K K, SINGH P K. Opposition chaotic fitness mutation based adaptive inertia weight BPSO for feature selection in text clustering[J]. Applied Soft Computing, 2016, 43: 20-34.
[25] EMARY E, ZAWBAA H M, HASSANIEN A E. Binary grey wolf optimization approaches for feature selection[J]. Neuro-computing, 2016, 172: 371-381. |