计算机科学与探索 ›› 2022, Vol. 16 ›› Issue (8): 1819-1928.DOI: 10.3778/j.issn.1673-9418.2101001
收稿日期:
2021-01-04
修回日期:
2021-03-02
出版日期:
2022-08-01
发布日期:
2021-03-25
通讯作者:
+E-mail: 6191611002@stu.jiangnan.edu.cn。作者简介:
陈洋(1995—),女,江苏扬州人,硕士研究生,主要研究方向为机器学习、模式识别。基金资助:
Received:
2021-01-04
Revised:
2021-03-02
Online:
2022-08-01
Published:
2021-03-25
About author:
CHEN Yang, born in 1995, M.S. candidate. Her research interests include machine learning and pattern recognition.Supported by:
摘要:
极限学习机(ELM)是一种单隐层前向网络的训练算法,随机确定输入层权值和隐含层偏置,通过分析的方法确定输出层的权值,ELM克服了基于梯度的学习算法的很多不足,如局部极小、不合适的学习速率、学习速度慢等,却不可避免地造成了过拟合的隐患且稳定性较差,特别是对于规模较大的数据集。针对上述问题,提出多样性正则化极限学习机(DRELM)的集成方法。首先,从改变隐层节点参数的分布来为每个ELM随机选取输入权重,采用LOO交叉验证方法和
中图分类号:
陈洋, 王士同. 多样性正则化极限学习机的集成方法[J]. 计算机科学与探索, 2022, 16(8): 1819-1928.
CHEN Yang, WANG Shitong. Ensemble Method of Diverse Regularized Extreme Learning Machines[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1819-1928.
数据集 | 样本数 | 特征数 | 类别数 | |
---|---|---|---|---|
训练集 | 测试集 | |||
austra | 552 | 138 | 15 | 2 |
Letter | 16 000 | 4 000 | 16 | 16 |
Magic | 15 216 | 3 804 | 10 | 2 |
Vehicle | 677 | 169 | 18 | 4 |
Diabets | 614 | 154 | 8 | 2 |
PCAMC | 1 554 | 389 | 3 289 | 3 |
pendigits | 8 794 | 2 198 | 16 | 10 |
Onlinenews | 31 715 | 7 929 | 16 | 2 |
optdigits | 4 496 | 1 124 | 64 | 10 |
Ionosphere | 281 | 70 | 34 | 2 |
表1 UCI的10个数据集的详细信息
Table 1 Details of 10 datasets for UCI
数据集 | 样本数 | 特征数 | 类别数 | |
---|---|---|---|---|
训练集 | 测试集 | |||
austra | 552 | 138 | 15 | 2 |
Letter | 16 000 | 4 000 | 16 | 16 |
Magic | 15 216 | 3 804 | 10 | 2 |
Vehicle | 677 | 169 | 18 | 4 |
Diabets | 614 | 154 | 8 | 2 |
PCAMC | 1 554 | 389 | 3 289 | 3 |
pendigits | 8 794 | 2 198 | 16 | 10 |
Onlinenews | 31 715 | 7 929 | 16 | 2 |
optdigits | 4 496 | 1 124 | 64 | 10 |
Ionosphere | 281 | 70 | 34 | 2 |
数据集 | SVM | RELM | DRM | 二参数BP | DRELM | |||
---|---|---|---|---|---|---|---|---|
austra | 23 | 2-1 | e-2 | 10-2 | 1.2 | 0.4 | 2-3 | 2-3 |
Letter | 24 | 20 | e0 | 10-3 | 1.2 | 0.6 | 22 | 2-1 |
Magic | 22 | 2-2 | e-4 | 10-6 | 1.1 | 0.4 | 2-2 | 2-6 |
Vehicle | 22 | 22 | e3 | 100 | 1.1 | 0.8 | 23 | 2-2 |
Diabets | 28 | 20 | e-1 | 10-5 | 1.2 | 0.6 | 21 | 2-3 |
PCAMC | 210 | 28 | 213 | 10-4 | 1.2 | 0.4 | 2-2 | 2-4 |
pendigits | 26 | 2-1 | e-21 | 10-1 | 1.1 | 0.6 | 2-4 | 2-5 |
Onlinenews | 25 | 25 | e-10 | 10-2 | 1.2 | 0.4 | 20 | 2-2 |
optdigits | 22 | 2-4 | e1 | 10-6 | 1.1 | 0.4 | 23 | 2-7 |
Ionosphere | 24 | 2-4 | e-12 | 10-4 | 1.1 | 0.8 | 2-1 | 2-4 |
表2 用于UCI数据集的各种模型的参数设置
Table 2 Parameter settings of various models for UCI datasets
数据集 | SVM | RELM | DRM | 二参数BP | DRELM | |||
---|---|---|---|---|---|---|---|---|
austra | 23 | 2-1 | e-2 | 10-2 | 1.2 | 0.4 | 2-3 | 2-3 |
Letter | 24 | 20 | e0 | 10-3 | 1.2 | 0.6 | 22 | 2-1 |
Magic | 22 | 2-2 | e-4 | 10-6 | 1.1 | 0.4 | 2-2 | 2-6 |
Vehicle | 22 | 22 | e3 | 100 | 1.1 | 0.8 | 23 | 2-2 |
Diabets | 28 | 20 | e-1 | 10-5 | 1.2 | 0.6 | 21 | 2-3 |
PCAMC | 210 | 28 | 213 | 10-4 | 1.2 | 0.4 | 2-2 | 2-4 |
pendigits | 26 | 2-1 | e-21 | 10-1 | 1.1 | 0.6 | 2-4 | 2-5 |
Onlinenews | 25 | 25 | e-10 | 10-2 | 1.2 | 0.4 | 20 | 2-2 |
optdigits | 22 | 2-4 | e1 | 10-6 | 1.1 | 0.4 | 23 | 2-7 |
Ionosphere | 24 | 2-4 | e-12 | 10-4 | 1.1 | 0.8 | 2-1 | 2-4 |
数据集 | SVM | RELM | DRM | 二参数BP | DRELM | |||||
---|---|---|---|---|---|---|---|---|---|---|
acc/% | std | acc/% | std | acc/% | std | acc/% | std | acc/% | std | |
austra | 86.03 | 2.15 | 63.44 | 1.10 | 86.07 | 1.30 | 84.92 | 2.14 | 88.54 | 0.79 |
Letter | 90.89 | 1.20 | 79.98 | 2.59 | 91.20 | 1.18 | 76.65 | 2.81 | 91.29 | 1.19 |
Magic | 84.59 | 0.82 | 63.01 | 4.28 | 84.64 | 1.11 | 72.74 | 0.78 | 85.95 | 0.38 |
Vehicle | 75.26 | 1.35 | 66.03 | 1.13 | 77.60 | 1.33 | 69.10 | 0.76 | 77.05 | 0.55 |
Diabets | 75.21 | 0.50 | 59.82 | 1.43 | 76.13 | 0.69 | 76.12 | 1.66 | 75.44 | 1.23 |
PCAMC | 88.43 | 1.39 | 72.04 | 1.51 | 88.01 | 1.35 | 85.96 | 1.92 | 91.02 | 1.31 |
pendigits | 97.05 | 1.79 | 85.44 | 3.65 | 97.67 | 0.17 | 93.31 | 4.42 | 98.16 | 0.41 |
Onlinenews | 62.19 | 1.20 | 52.82 | 1.45 | 65.01 | 1.12 | 60.17 | 1.13 | 68.66 | 0.70 |
optdigits | 93.79 | 3.51 | 80.84 | 2.64 | 94.68 | 1.04 | 91.01 | 1.49 | 98.10 | 1.06 |
Ionosphere | 66.25 | 0.94 | 60.64 | 1.53 | 66.18 | 1.21 | 63.54 | 0.96 | 70.01 | 0.89 |
表3 各种模型对于不同数据集的测试结果与性能比较
Table 3 Test result and performance comparison of various models on different datasets
数据集 | SVM | RELM | DRM | 二参数BP | DRELM | |||||
---|---|---|---|---|---|---|---|---|---|---|
acc/% | std | acc/% | std | acc/% | std | acc/% | std | acc/% | std | |
austra | 86.03 | 2.15 | 63.44 | 1.10 | 86.07 | 1.30 | 84.92 | 2.14 | 88.54 | 0.79 |
Letter | 90.89 | 1.20 | 79.98 | 2.59 | 91.20 | 1.18 | 76.65 | 2.81 | 91.29 | 1.19 |
Magic | 84.59 | 0.82 | 63.01 | 4.28 | 84.64 | 1.11 | 72.74 | 0.78 | 85.95 | 0.38 |
Vehicle | 75.26 | 1.35 | 66.03 | 1.13 | 77.60 | 1.33 | 69.10 | 0.76 | 77.05 | 0.55 |
Diabets | 75.21 | 0.50 | 59.82 | 1.43 | 76.13 | 0.69 | 76.12 | 1.66 | 75.44 | 1.23 |
PCAMC | 88.43 | 1.39 | 72.04 | 1.51 | 88.01 | 1.35 | 85.96 | 1.92 | 91.02 | 1.31 |
pendigits | 97.05 | 1.79 | 85.44 | 3.65 | 97.67 | 0.17 | 93.31 | 4.42 | 98.16 | 0.41 |
Onlinenews | 62.19 | 1.20 | 52.82 | 1.45 | 65.01 | 1.12 | 60.17 | 1.13 | 68.66 | 0.70 |
optdigits | 93.79 | 3.51 | 80.84 | 2.64 | 94.68 | 1.04 | 91.01 | 1.49 | 98.10 | 1.06 |
Ionosphere | 66.25 | 0.94 | 60.64 | 1.53 | 66.18 | 1.21 | 63.54 | 0.96 | 70.01 | 0.89 |
数据集 | SVM | RELM | DRM | BP | DRELM |
---|---|---|---|---|---|
austra | 12.93 | 0.14 | 31.92 | 71.69 | 19.27 |
Letter | 9 125.81 | 42.29 | 13 687.04 | 76 345.41 | 65.72 |
Magic | 7 846.74 | 983.15 | 17 261.16 | 69 530.23 | 1 471.57 |
Vehicle | 412.61 | 0.92 | 487.22 | 518.21 | 502.94 |
Diabets | 361.65 | 0.68 | 411.15 | 60.43 | 443.17 |
PCAMC | 4 741.97 | 847.56 | 5 626.57 | 40 725.52 | 1 185.41 |
pendigits | 5 874.13 | 614.09 | 6 755.14 | 33 672.81 | 920.67 |
Onlinenews | 12 136.65 | 1 984.95 | 19 863.42 | 99 215.07 | 2 679.80 |
optdigits | 1 294.92 | 4.62 | 1 785.38 | 30 674.16 | 560.57 |
Ionosphere | 7.08 | 0.08 | 22.29 | 20.14 | 8.99 |
表4 各种模型对于不同数据集的训练时间比较
Table 4 Training time comparison of various models on different datasets s
数据集 | SVM | RELM | DRM | BP | DRELM |
---|---|---|---|---|---|
austra | 12.93 | 0.14 | 31.92 | 71.69 | 19.27 |
Letter | 9 125.81 | 42.29 | 13 687.04 | 76 345.41 | 65.72 |
Magic | 7 846.74 | 983.15 | 17 261.16 | 69 530.23 | 1 471.57 |
Vehicle | 412.61 | 0.92 | 487.22 | 518.21 | 502.94 |
Diabets | 361.65 | 0.68 | 411.15 | 60.43 | 443.17 |
PCAMC | 4 741.97 | 847.56 | 5 626.57 | 40 725.52 | 1 185.41 |
pendigits | 5 874.13 | 614.09 | 6 755.14 | 33 672.81 | 920.67 |
Onlinenews | 12 136.65 | 1 984.95 | 19 863.42 | 99 215.07 | 2 679.80 |
optdigits | 1 294.92 | 4.62 | 1 785.38 | 30 674.16 | 560.57 |
Ionosphere | 7.08 | 0.08 | 22.29 | 20.14 | 8.99 |
[1] | KROGH A S, VEDELSBY J. Neural network ensembles, cross validation and active learning[C]// Advances in Neural Information Processing Systems 7, Denver, 1994. Cambridge:MIT Press, 1994: 231-238. |
[2] | HASTIE T, TIBSHIRANI R, FRIEDMAN J. The elements of statistical learning[M]. Berlin, Heidelberg: Springer, 2007. |
[3] | BROWN G. An information theoretic perspective on multiple classifier systems[C]// LNCS 5519: Proceedings of the 8th International Workshop on Multiple Classifier Systems, Reyk-javik, Jun 10-12, 2009. Berlin, Heidelberg: Springer, 2009: 344-353. |
[4] | ZHOU Z H, LI N. Multi-information ensemble diversity[C]// LNCS 5997: Proceedings of the 9th International Workshop on Multiple Classifier Systems, Cairo, Apr 7-9, 2010. Berlin, Heidelberg: Springer, 2010: 134-144. |
[5] | YU Y, LI Y F, ZHOU Z H. Diversity regularized machine[C]// Proceedings of the 22nd International Joint Conference on Artificial Intelligence, Barcelona, Jul 16-22, 2011. Menlo Park: AAAI, 2011: 1603-1608. |
[6] | BREIMAN L. Bagging predicators[J]. Machine Learning, 1996, 24(2): 123-140. |
[7] | FREUND Y, SCHAPIRE R E. A desicion-theoretic genera-lization of on-line learning and an application to Boosting[J]. Journal of Computer and System Sciences, 1995, 55: 119-139. |
[8] | GOPIKA D, AZHAGUSUNDARN B. An analysis on ensem-ble methods in classification tasks[J]. International Journal of Advanced Research in Computer and Communication Engineering, 2014, 3(7): 7423-7427. |
[9] | ZHAO X G, WANG G, BI X, et al. XML document classi-fication based on ELM[J]. Neurocomputing, 2011, 74(16): 2444-2451. |
[10] | JIANG Y L, SHEN Y F, LIU Y, et al. Multiclass AdaBoost ELM and its application in LBP based face recognition[J]. Mathematical Problems in Engineering, 2015: 918105. |
[11] | LI M, XIAO P L, ZHANG J. Text classification based on ensemble extreme learning machine[J]. arXiv:1805.06525, 2018. |
[12] | HUANG G B, ZHU Q Y, SIEW C K. Extreme learning ma-chine: a new learn ing scheme for feedforward neural net-works[C]// Proceedings of the 2004 IEEE International Joint Conference on Neural Networks, Budapest, Jul 25-29, 2004. Piscataway: IEEE, 2004: 1-5. |
[13] | CAO J W, ZHANG K, LUO M X, et al. Extreme learning machine and adaptive sparse representation for image classi-fication[J]. Neural Networks, 2016, 81: 91-102. |
[14] | 左鹏玉, 王士同. 无逆矩阵在线序列极限学习机[J]. 计算机科学与探索, 2020, 14(1): 117-124. |
ZUO P Y, WANG S T. Inverse-matrix-free online sequen-tial extreme learning machine[J]. Journal of Frontiers of Com-puter Science and Technology, 2020, 14(1): 117-124. | |
[15] | 于化龙, 祁云嵩, 杨习贝, 等. 类不平衡模糊加权极限学习机算法研究[J]. 计算机科学与探索, 2017, 11(4): 619-632. |
YU H L, QI Y S, YANG X B, et al. Research on class imbalance fuzzy weighted extreme learning machine algori-thm[J]. Journal of Frontiers of Computer Science and Tec-hnology, 2017, 11(4): 619-632. | |
[16] | MICHE Y, SORJAMAA A, BAS P, et al. OP-ELM: optimally-pruned extreme learning machine[J]. IEEE Transactions on Neural Networks, 2010, 21(1): 158-162. |
[17] | KUNCHEVA L I, WHITAKER C J, SHIPP C A, et al. Limits on the majority vote accuracy in classifier fusion[J]. Pattern Analysis & Applications, 2003, 6(1): 22-31. |
[18] | HO T K. The random subspace method for constructing decision forests[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(8): 832-832. |
[19] | GIACINTO G, ROLI F. Design of effective neural network ensembles for image classification purposes[J]. Image and Vision Computing, 2001, 19(9/10): 699-707. |
[20] | DIETTERICH T G. An experimental comparison of three methods for constructing ensembles of decision trees: Bag-ging, Boosting, and randomization[J]. Machine Learning, 2000, 40(2): 139-157. |
[21] | LUO Z Q, TSENG P. On the convergence of the coordinate descent method for convex differentiable minimization[J]. Journal of Optimization Theory and Applications, 1992, 72(1): 7-35. |
[22] | BONAB H, CAN F. Less Is More: a comprehensive frame-work for the number of components of ensemble classifiers[J]. IEEE Transactions on Neural Networks and Learning Sys-tems, 2019, 30(9): 2735-2745. |
[23] | JOHN A C. Classical and modern regression with applica-tions[J]. Technometrics, 1987, 29(3): 377-378. |
[24] | VAN HEESWIJK M, MICHE Y. Binary/ternary extreme learning machines[J]. Neurocomputing, 2015, 149: 187-197. |
[25] | 李森林, 邓小武. 基于二参数的BP神经网络算法改进与应用[J]. 河北科技大学学报, 2010, 31(5): 447-450. |
LI S L, DENG X W. Improvement and application of BP algorithm with two arguments in neural networks[J]. Jour-nal of Hebei University of Science and Technology, 2010, 31(5): 447-450. |
[1] | 杨政, 邓赵红, 罗晓清, 顾鑫, 王士同. 利用ELM-AE和迁移表征学习构建的目标跟踪系统[J]. 计算机科学与探索, 2022, 16(7): 1633-1648. |
[2] | 张壮, 王士同. 不平衡数据的Takagi-Sugeno-Kang模糊分类集成模型[J]. 计算机科学与探索, 2022, 16(6): 1374-1382. |
[3] | 申瑞彩, 翟俊海, 侯璎真. 选择性集成学习多判别器生成对抗网络[J]. 计算机科学与探索, 2022, 16(6): 1429-1438. |
[4] | 杨永兆, 张玉金, 张立军. 由形状结构和位姿特征学习的稠密点云重建[J]. 计算机科学与探索, 2022, 16(5): 1117-1127. |
[5] | 张毅, 王士同. 在高斯分布下优化仿射变换的极限学习机[J]. 计算机科学与探索, 2021, 15(4): 690-701. |
[6] | 王曙燕, 金航, 孙家泽. GAN图像对抗样本生成方法[J]. 计算机科学与探索, 2021, 15(4): 702-711. |
[7] | 叶进, 谢紫琪, 肖庆宇, 宋玲, 李晓欢. 数据中心网络中基于ELM的流簇大小推理机制[J]. 计算机科学与探索, 2021, 15(2): 261-269. |
[8] | 黄宇翔, 黄栋, 王昌栋, 赖剑煌. 基于集成学习的改进深度嵌入聚类算法[J]. 计算机科学与探索, 2021, 15(10): 1949-1957. |
[9] | 孙伟, 张羽. 利用流挖掘和图挖掘的内网异常检测方法[J]. 计算机科学与探索, 2020, 14(7): 1154-1163. |
[10] | 陈兴国,徐修颖,陈康扬,杨光. 基于CMAES集成学习方法的地表水质分类[J]. 计算机科学与探索, 2020, 14(3): 426-436. |
[11] | 杨浩,陈红梅. 结合样本局部密度的非平衡数据集成分类算法[J]. 计算机科学与探索, 2020, 14(2): 274-284. |
[12] | 孙涛,周志华. 近似多元信息多样性[J]. 计算机科学与探索, 2019, 13(4): 639-646. |
[13] | 和凤珍,石进平. 非均匀划分拟阵约束下的多样性推荐方法[J]. 计算机科学与探索, 2019, 13(2): 226-238. |
[14] | 丁毅,王明亮,张道强. 差异性随机子空间集成[J]. 计算机科学与探索, 2018, 12(9): 1434-1443. |
[15] | 郭晓彤,李玲燕,朱春阳. Pareto支配关系下两阶段进化高维多目标优化算法[J]. 计算机科学与探索, 2018, 12(8): 1350-1360. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 130
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 312
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||