[1] |
杨剑锋, 乔佩蕊, 李永梅, 等. 机器学习分类问题及算法研究综述[J]. 统计与决策, 2019, 35(6): 36-40.
|
|
YANG J F, QIAO P R, LI Y M, et al. A review of machine-learning classification and algorithms[J]. Statistics & Decision, 2019, 35(6): 36-40.
|
[2] |
厉柏伸, 李领治, 孙涌, 等. 基于伪梯度提升决策树的内网防御算法[J]. 计算机科学, 2018, 45(4): 157-162.
|
|
LI B S, LI L Z, SUN Y, et al. Internet defense algorithm based on pseudo Boosting decision tree[J]. Computer Science, 2018, 45(4): 157-162.
|
[3] |
SALLES T, GONCALVES M, RODRIGUES V, et al. Improving random forests by neighborhood projection for effective text classification[J]. Information Systems, 2018, 77(9): 1-21.
DOI
URL
|
[4] |
YAN L, DIAO Y, GAO K. Analysis of environmental factors affecting the atmospheric corrosion rate of low-alloy steel using random forest-based models[J]. Materials, 2020, 13(15): 3266.
DOI
URL
|
[5] |
周永圣, 崔佳丽, 周琳云, 等. 基于改进的随机森林模型的个人信用风险评估研究[J]. 征信, 2020, 38(1): 28-32.
|
|
ZHOU Y S, CUI J L, ZHOU L Y, et al. Study on the evaluation of personal credit risk based on the improved random forest model[J]. Credit Reference, 2020, 38(1): 28-32.
|
[6] |
BOULESTEIX A L, JANITZA S, KRUPPA J, et al. Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics[J]. Wiley Interdisciplinary Reviews: Data Mining and Know-ledge Discovery, 2012, 2(6): 493-507.
|
[7] |
ELYAN E, GABER M M. A fine-grained random forests using class decomposition: an application to medical diagnosis[J]. Neural Computing and Applications, 2016, 27(8): 2279-2288.
DOI
URL
|
[8] |
米允龙, 米春桥, 刘文奇. 海量数据挖掘过程相关技术研究进展[J]. 计算机科学与探索, 2015, 9(6): 641-659.
|
|
MI Y L, MI C Q, LIU W Q. Research advance on related technology of massive data mining process[J]. Journal of Frontiers of Computer Science and Technology, 2015, 9(6): 641-659.
|
[9] |
宋杰, 孙宗哲, 毛克明, 等. MapReduce大数据处理平台与算法研究进展[J]. 软件学报, 2017, 28(3): 514-543.
|
|
SONG J, SUN Z Z, MAO K M, et al. Research advance on MapReduce based on big data processing platforms and algorithms[J]. Journal of Software, 2017, 28(3): 514-543.
|
[10] |
曹蒙蒙, 郭朝有. Hadoop平台下Mahout随机森林算法的分析与实现[J]. 舰船电子工程, 2018, 38(9): 40-44.
|
|
CAO M M, GUO C Y. Analysis and implementation of random forest algorithm in Mahout based on Hadoop[J]. Ship Electronic Engineering, 2018, 38(9): 40-44.
|
[11] |
钱雪忠, 秦静, 宋威. 改进的并行随机森林算法及其包外估计[J]. 计算机应用研究, 2018, 35(6): 1651-1654.
|
|
QIAN X Z, QIN J, SONG W. Improved parallel random forest and its out_of_bag estimator[J]. Application Research of Computers, 2018, 35(6): 1651-1654.
|
[12] |
CHEN J G, LI K L, TANG Z, et al. A parallel random forest algorithm for big data in a spark cloud computing environment[J]. IEEE Transactions on Parallel and Distributed Systems, 2017, 28(4): 919-933.
DOI
URL
|
[13] |
LIU S, HU T Y. Parallel random forest algorithm optimization based on maximal information coefficient[C]// Proceedings of the 9th International Conference on Software Engineering and Service Science, Beijing, Nov 23-25, 2018. Piscataway: IEEE, 2018: 1-5.
|
[14] |
SENA I G W, DILLAK J W, LEUNUPUN P, et al. Predicting rainfall intensity using Naïve Bayes and information gain methods[J]. Journal of Physics: Conference Series, 2020, 1577(1): 012011.
DOI
URL
|
[15] |
GAO W F, HU L, ZHANG P. Feature redundancy term variation for mutual information-based feature selection[J]. Applied Intelligence, 2020, 50(4): 1272-1288.
DOI
URL
|
[16] |
ZHANG F, GAO W F, LIU G X. Feature selection considering weighted relevancy[J]. Applied Intelligence, 2018, 48(12): 4615-4625.
DOI
URL
|
[17] |
SERGEEV I. Generalizations of 2-dimensional diagonal quantum channels with constant Frobenius norm[J]. Reports on Mathematical Physics, 2019, 83(3): 349-372.
DOI
URL
|
[18] |
陈向阳, 胡晓倩, 吴永祥, 等. 主成分分析法在生物技术专业核心课程成绩评价中的应用[J]. 安徽农业科学, 2020, 48(16): 262-264.
|
|
CHEN X Y, HU X Q, WU Y X, et al. Application of principal component analysis in the grade evaluation of biotechnology specialty[J]. Journal of Anhui Agricultural Sciences, 2020, 48(16): 262-264.
|
[19] |
李素, 袁志高, 王聪, 等. 群智能算法优化支持向量机参数综述[J]. 智能系统学报, 2018, 13(1): 70-84.
|
|
LI S, YUAN Z G, WANG C, et al. Optimization of support vector machine parameters based on group intelligence algorithm[J]. CAAI Transactions on Intelligent Systems, 2018, 13(1): 70-84.
|