计算机科学与探索 ›› 2022, Vol. 16 ›› Issue (6): 1390-1404.DOI: 10.3778/j.issn.1673-9418.2011095
收稿日期:
2020-11-30
修回日期:
2021-03-08
出版日期:
2022-06-01
发布日期:
2021-03-25
通讯作者:
+ E-mail: yxm6301@163.com作者简介:
赵家波(1997—),男,河南信阳人,硕士研究生,主要研究方向为智能算法、移动机器人路径规划、嵌入式系统。基金资助:
ZHAO Jiabo1, YOU Xiaoming1,+(), LIU Sheng2
Received:
2020-11-30
Revised:
2021-03-08
Online:
2022-06-01
Published:
2021-03-25
About author:
ZHAO Jiabo, born in 1997, M.S. candidate. His research interests include intelligent algorithm, path planning of mobile robot and embedded system.Supported by:
摘要:
针对传统蚁群算法在旅行商问题(TSP)中易陷入局部最优、收敛速度较慢等问题,提出一种结合价格波动策略与动态回溯机制的蚁群算法。在价格波动策略中,结合时间序列思想将蚁群算法完整迭代周期进行分类,并根据价格波动平衡,将影响价格波动的供求关系进行匹配。通过分析算法在不同分类中的不同需求,对信息素挥发因子进行自适应动态供给,加快算法收敛速度的同时改善解的多样性。当价格波动策略的供给关系无法实现平衡时,算法将面临局部最优问题,此时引入动态回溯机制,以迭代最优蚂蚁的个体相似度作为标准,将路径信息素回溯至相似度差异显著的时期,在保证收敛速度的同时能够有效跳出局部最优。通过MATLAB对TSP中的不同测试集进行仿真,结果表明该算法在保证收敛速度的基础上,有效提高了解的质量,在中大规模城市集上较好地平衡了多样性与收敛速度的关系。
中图分类号:
赵家波, 游晓明, 刘升. 结合价格波动策略与动态回溯机制的蚁群算法[J]. 计算机科学与探索, 2022, 16(6): 1390-1404.
ZHAO Jiabo, YOU Xiaoming, LIU Sheng. Ant Colony Algorithm Based on Price Fluctuation Strategy and Dynamic Backtracking Mechanism[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(6): 1390-1404.
| | | | | |
---|---|---|---|---|---|
1 | 4 | 0.1 | 50 | 0.8 | 2 000 |
表1 PBACO的公共参数设置
Table 1 Public parameter setting of PBACO
| | | | | |
---|---|---|---|---|---|
1 | 4 | 0.1 | 50 | 0.8 | 2 000 |
| 0.1 | 0.3 | 0.5 | 0.7 | 0.9 |
---|---|---|---|---|---|
0.1 | — | 0.1~0.3 | 0.1~0.5 | 0.1~0.7 | 0.1~0.9 |
0.3 | — | — | 0.3~0.5 | 0.3~0.7 | 0.3~0.9 |
0.5 | — | — | — | 0.5~0.7 | 0.5~0.9 |
0.7 | — | — | — | — | 0.7~0.9 |
0.9 | — | — | — | — | — |
表2 节点分配组合表
Table 2 Node allocation combination table
| 0.1 | 0.3 | 0.5 | 0.7 | 0.9 |
---|---|---|---|---|---|
0.1 | — | 0.1~0.3 | 0.1~0.5 | 0.1~0.7 | 0.1~0.9 |
0.3 | — | — | 0.3~0.5 | 0.3~0.7 | 0.3~0.9 |
0.5 | — | — | — | 0.5~0.7 | 0.5~0.9 |
0.7 | — | — | — | — | 0.7~0.9 |
0.9 | — | — | — | — | — |
| 最小误差率/% | 满足误差率0.5%的比例/% | 平均解 |
---|---|---|---|
0.1~0.3 | 0 | 93.33 | 21 334 |
0.1~0.5 | 0 | 73.33 | 21 355 |
0.1~0.7 | 0 | 60.00 | 21 450 |
0.1~0.9 | 0 | 73.33 | 21 365 |
0.3~0.5 | 0 | 66.67 | 21 392 |
0.3~0.7 | 0 | 73.33 | 21 387 |
0.3~0.9 | 0 | 60.00 | 21 452 |
0.5~0.7 | 0 | 46.67 | 21 497 |
0.5~0.9 | 0 | 60.00 | 21 373 |
0.3 | 0 | 73.33 | 21 390 |
表3 不同区间 ρ在KroA100对蚁群算法性能的影响
Table 3 Effect of different interval ρ in KroA100 on performance of ant colony algorithm
| 最小误差率/% | 满足误差率0.5%的比例/% | 平均解 |
---|---|---|---|
0.1~0.3 | 0 | 93.33 | 21 334 |
0.1~0.5 | 0 | 73.33 | 21 355 |
0.1~0.7 | 0 | 60.00 | 21 450 |
0.1~0.9 | 0 | 73.33 | 21 365 |
0.3~0.5 | 0 | 66.67 | 21 392 |
0.3~0.7 | 0 | 73.33 | 21 387 |
0.3~0.9 | 0 | 60.00 | 21 452 |
0.5~0.7 | 0 | 46.67 | 21 497 |
0.5~0.9 | 0 | 60.00 | 21 373 |
0.3 | 0 | 73.33 | 21 390 |
| 最小误差率/% | 满足误差率0.5%的比例/% | 平均解 |
---|---|---|---|
0.1~0.3 | 0.05 | 40.00 | 29 542 |
0.1~0.5 | 0.05 | 40.00 | 29 527 |
0.1~0.9 | 0.39 | 20.00 | 29 546 |
0.3~0.7 | 0.15 | 13.33 | 29 588 |
0.5~0.9 | 0.54 | 0 | 29 737 |
0.3 | 0.16 | 13.33 | 29 760 |
表4 不同区间 ρ在KroA200对蚁群算法性能的影响
Table 4 Effect of different interval ρ in KroA200 on performance of ant colony algorithm
| 最小误差率/% | 满足误差率0.5%的比例/% | 平均解 |
---|---|---|---|
0.1~0.3 | 0.05 | 40.00 | 29 542 |
0.1~0.5 | 0.05 | 40.00 | 29 527 |
0.1~0.9 | 0.39 | 20.00 | 29 546 |
0.3~0.7 | 0.15 | 13.33 | 29 588 |
0.5~0.9 | 0.54 | 0 | 29 737 |
0.3 | 0.16 | 13.33 | 29 760 |
方案 | 优化组合 |
---|---|
A | ACS |
B | ACS+价格波动策略 |
C | ACS+价格波动策略+动态回溯机制 |
表5 优化方案表
Table 5 Optimization scheme table
方案 | 优化组合 |
---|---|
A | ACS |
B | ACS+价格波动策略 |
C | ACS+价格波动策略+动态回溯机制 |
TSP实例 | 标准 最优解 | 优化 方案 | 最优解 | 误差率/% | 平均解 | 迭代 次数 |
---|---|---|---|---|---|---|
A | 538 | 0 | 544 | 1 136 | ||
eil76 | 538 | B | 538 | 0 | 541 | 776 |
C | 538 | 0 | 540 | 352 | ||
A | 26 664 | 0.53 | 27 108 | 1 434 | ||
KroA150 | 26 524 | B | 26 657 | 0.50 | 26 909 | 1 212 |
C | 26 605 | 0.30 | 26 840 | 1 442 | ||
A | 3 933 | 0.43 | 3 997 | 1 120 | ||
tsp225 | 3 916 | B | 3 926 | 0.25 | 3 964 | 1 665 |
C | 3 923 | 0.17 | 3 942 | 1 151 |
表6 优化方案性能对比表
Table 6 Performance comparison table of optimization scheme
TSP实例 | 标准 最优解 | 优化 方案 | 最优解 | 误差率/% | 平均解 | 迭代 次数 |
---|---|---|---|---|---|---|
A | 538 | 0 | 544 | 1 136 | ||
eil76 | 538 | B | 538 | 0 | 541 | 776 |
C | 538 | 0 | 540 | 352 | ||
A | 26 664 | 0.53 | 27 108 | 1 434 | ||
KroA150 | 26 524 | B | 26 657 | 0.50 | 26 909 | 1 212 |
C | 26 605 | 0.30 | 26 840 | 1 442 | ||
A | 3 933 | 0.43 | 3 997 | 1 120 | ||
tsp225 | 3 916 | B | 3 926 | 0.25 | 3 964 | 1 665 |
C | 3 923 | 0.17 | 3 942 | 1 151 |
TSP实例 | 标准 最优解 | 算法 | 最优解 | 平均解 | 误差率/% | 迭代 次数 | TSP实例 | 标准 最优解 | 算法 | 最优解 | 平均解 | 误差率/% | 迭代 次数 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ACS | 426 | 428 | 0 | 1 092 | ACS | 26 167 | 26 397 | 0.14 | 1 182 | ||||
eil51 | 426 | ACS+3opt | 426 | 428 | 0 | 1 274 | KroB150 | 26 130 | ACS+3opt | 26 141 | 26 515 | 0.04 | 1 833 |
PBACO | 426 | 427 | 0 | 309 | PBACO | 26 130 | 26 266 | 0 | 499 | ||||
ACS | 538 | 544 | 0 | 1 528 | ACS | 29 440 | 29 646 | 0.25 | 1 434 | ||||
eil76 | 538 | ACS+3opt | 538 | 542 | 0 | 1 034 | KroA200 | 29 368 | ACS+3opt | 29 416 | 29 778 | 0.16 | 1 281 |
PBACO | 538 | 540 | 0 | 352 | PBACO | 29 383 | 29 768 | 0.05 | 1 142 | ||||
ACS | 21 282 | 21 433 | 0 | 1 092 | ACS | 29 819 | 30 194 | 1.29 | 1 021 | ||||
KroA100 | 21 282 | ACS+3opt | 21 282 | 21 390 | 0 | 1 274 | KroB200 | 29 437 | ACS+3opt | 29 822 | 30 083 | 1.31 | 1 848 |
PBACO | 21 282 | 21 345 | 0 | 309 | PBACO | 29 558 | 29 743 | 0.41 | 440 | ||||
ACS | 22 246 | 22 311 | 0.47 | 1 528 | ACS | 3 933 | 3 997 | 0.66 | 1 340 | ||||
KroB100 | 22 141 | ACS+3opt | 22 236 | 22 311 | 0.43 | 1 034 | tsp225 | 3 916 | ACS+3opt | 3 942 | 3 993 | 0.66 | 1 821 |
PBACO | 22 141 | 22 253 | 0 | 352 | PBACO | 3 923 | 3 942 | 0.17 | 1 151 | ||||
ACS | 6 146 | 6 220 | 0.59 | 1 538 | ACS | 2 605 | 2 642 | 1.00 | 1 114 | ||||
ch130 | 6 110 | ACS+3opt | 6 145 | 6 221 | 0.57 | 1 017 | a280 | 2 579 | ACS+3opt | 2 604 | 2 643 | 0.93 | 1 256 |
PBACO | 6 110 | 6 170 | 0 | 639 | PBACO | 2 590 | 2 617 | 0.42 | 1 059 | ||||
ACS | 6 554 | 6 591 | 0.39 | 536 | ACS | 43 203 | 43 626 | 2.79 | 1 076 | ||||
ch150 | 6 528 | ACS+3opt | 6 544 | 6 569 | 0.24 | 850 | lin318 | 42 029 | ACS+3opt | 43 166 | 43 603 | 2.71 | 1 599 |
PBACO | 6 533 | 6 551 | 0.07 | 366 | PBACO | 42 384 | 42 432 | 0.84 | 1 151 | ||||
ACS | 26 664 | 27 108 | 0.53 | 1 096 | |||||||||
KroA150 | 26 524 | ACS+3opt | 26 659 | 26 825 | 0.51 | 1 454 | |||||||
PBACO | 26 605 | 26 840 | 0.30 | 1 442 |
表7 不同规模城市数据集的性能对比
Table 7 Performance comparison of urban datasets of different sizes
TSP实例 | 标准 最优解 | 算法 | 最优解 | 平均解 | 误差率/% | 迭代 次数 | TSP实例 | 标准 最优解 | 算法 | 最优解 | 平均解 | 误差率/% | 迭代 次数 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ACS | 426 | 428 | 0 | 1 092 | ACS | 26 167 | 26 397 | 0.14 | 1 182 | ||||
eil51 | 426 | ACS+3opt | 426 | 428 | 0 | 1 274 | KroB150 | 26 130 | ACS+3opt | 26 141 | 26 515 | 0.04 | 1 833 |
PBACO | 426 | 427 | 0 | 309 | PBACO | 26 130 | 26 266 | 0 | 499 | ||||
ACS | 538 | 544 | 0 | 1 528 | ACS | 29 440 | 29 646 | 0.25 | 1 434 | ||||
eil76 | 538 | ACS+3opt | 538 | 542 | 0 | 1 034 | KroA200 | 29 368 | ACS+3opt | 29 416 | 29 778 | 0.16 | 1 281 |
PBACO | 538 | 540 | 0 | 352 | PBACO | 29 383 | 29 768 | 0.05 | 1 142 | ||||
ACS | 21 282 | 21 433 | 0 | 1 092 | ACS | 29 819 | 30 194 | 1.29 | 1 021 | ||||
KroA100 | 21 282 | ACS+3opt | 21 282 | 21 390 | 0 | 1 274 | KroB200 | 29 437 | ACS+3opt | 29 822 | 30 083 | 1.31 | 1 848 |
PBACO | 21 282 | 21 345 | 0 | 309 | PBACO | 29 558 | 29 743 | 0.41 | 440 | ||||
ACS | 22 246 | 22 311 | 0.47 | 1 528 | ACS | 3 933 | 3 997 | 0.66 | 1 340 | ||||
KroB100 | 22 141 | ACS+3opt | 22 236 | 22 311 | 0.43 | 1 034 | tsp225 | 3 916 | ACS+3opt | 3 942 | 3 993 | 0.66 | 1 821 |
PBACO | 22 141 | 22 253 | 0 | 352 | PBACO | 3 923 | 3 942 | 0.17 | 1 151 | ||||
ACS | 6 146 | 6 220 | 0.59 | 1 538 | ACS | 2 605 | 2 642 | 1.00 | 1 114 | ||||
ch130 | 6 110 | ACS+3opt | 6 145 | 6 221 | 0.57 | 1 017 | a280 | 2 579 | ACS+3opt | 2 604 | 2 643 | 0.93 | 1 256 |
PBACO | 6 110 | 6 170 | 0 | 639 | PBACO | 2 590 | 2 617 | 0.42 | 1 059 | ||||
ACS | 6 554 | 6 591 | 0.39 | 536 | ACS | 43 203 | 43 626 | 2.79 | 1 076 | ||||
ch150 | 6 528 | ACS+3opt | 6 544 | 6 569 | 0.24 | 850 | lin318 | 42 029 | ACS+3opt | 43 166 | 43 603 | 2.71 | 1 599 |
PBACO | 6 533 | 6 551 | 0.07 | 366 | PBACO | 42 384 | 42 432 | 0.84 | 1 151 | ||||
ACS | 26 664 | 27 108 | 0.53 | 1 096 | |||||||||
KroA150 | 26 524 | ACS+3opt | 26 659 | 26 825 | 0.51 | 1 454 | |||||||
PBACO | 26 605 | 26 840 | 0.30 | 1 442 |
TSP实例 | 标准 最优解 | PBACO | CACS | TREEACS | 文献[11] |
---|---|---|---|---|---|
eil51 | 426 | 426 | 426 | 426 | |
eil76 | 538 | 538 | 538 | 538 | |
KroA100 | 21 282 | 21 282 | 21 282 | 21 282 | 21 308 |
KroB100 | 22 141 | 22 141 | 22 220 | 22 141 | — |
ch130 | 6 110 | 6 110 | 6 116 | — | — |
KroA200 | 29 368 | 29 383 | 29 401 | 29 413 | 29 581 |
KroB200 | 29 437 | 29 558 | 29 695 | — | — |
lin318 | 42 029 | 42 384 | 42 462 | 42 399 | — |
表8 PBACO与其他最新改进算法比较
Table 8 Comparison of PBACO with other newly improved algorithms
TSP实例 | 标准 最优解 | PBACO | CACS | TREEACS | 文献[11] |
---|---|---|---|---|---|
eil51 | 426 | 426 | 426 | 426 | |
eil76 | 538 | 538 | 538 | 538 | |
KroA100 | 21 282 | 21 282 | 21 282 | 21 282 | 21 308 |
KroB100 | 22 141 | 22 141 | 22 220 | 22 141 | — |
ch130 | 6 110 | 6 110 | 6 116 | — | — |
KroA200 | 29 368 | 29 383 | 29 401 | 29 413 | 29 581 |
KroB200 | 29 437 | 29 558 | 29 695 | — | — |
lin318 | 42 029 | 42 384 | 42 462 | 42 399 | — |
[1] | DORIGO M, MANIEZZO V, COLORNI A. Ant system: optimization by a colony of cooperating agents[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1996, 26(1): 29-41. |
[2] |
DORIGO M, BIRATTARI M, STÜTZLE T. Ant colony opti-mization[J]. IEEE Computational Intelligence Magazine, 2006, 1(4): 28-39.
DOI URL |
[3] | 李霆, 方志坚, 罗义旺, 等. 基于改进蚁群算法的配电网故障定位研究[J]. 微型电脑应用, 2020, 36(9): 86-88. |
LI T, FANG Z J, LUO Y W, et al. Research on fault location of distribution network based on improved ant colony algo-rithm[J]. Microcomputer Applications, 2020, 36(9): 86-88. | |
[4] | 黄钦龙, 刘忠, 童继进. 改进的蚁群算法求解无人艇编队火力分配问题[J]. 电光与控制, 2020, 27(8): 58-63. |
HUANG Q L, LIU Z, TONG J J. An improved ant colony algorithm for solving firepower allocation problem of USV formation[J]. Electronics Optics & Control, 2020, 27(8): 58-63. | |
[5] | 张文柱, 孔维鹏, 高鹏, 等. 基于改进蚁群算法的无线传感网络路由算法研究[J]. 计算机测量与控制, 2020, 28(7): 274-279. |
ZHANG W Z, KONG W P, GAO P, et al. Research on routing algorithm of wireless sensor network based on im-proved ant colony algorithm[J]. Computer Measurement & Control, 2020, 28(7): 274-279. | |
[6] | 王鹏飞. 群智能优化算法及在流水车间调度问题中的应用研究[D]. 长春: 吉林大学, 2019. |
WANG P F. Swarm intelligence optimization algorithm and its application in flow shop scheduling problem[D]. Chang-chun: Jilin University, 2019. | |
[7] |
DORIGO M, GAMBARDELLA L M. Ant colony system: a cooperative learning approach to the traveling salesman pro-blem[J]. IEEE Transactions on Evolutionary Computation, 1997, 1(1): 53-66.
DOI URL |
[8] |
STÜTZLE T, HOOS H H. Max-min ant system[J]. Future Generation Computer Systems, 2000, 16(8): 889-914.
DOI URL |
[9] | 刘新亮. 基于遗传蚁群算法的旅行商问题的研究[D]. 青岛: 山东科技大学, 2017. |
LIU X L. Research on traveling salesman problem based on genetic ant colony algorithm[D]. Qingdao: Shandong University of Science and Technology, 2017. | |
[10] | 何亮亮, 王晓东. 基于初始信息素和二次挥发的改进蚁群算法[J]. 西安工程大学学报, 2018, 32(6): 739-744. |
HE L L, WANG X D. Improved ant colony algorithm based on initial pheromone and secondary volatilization[J]. Journal of Xi’an Polytechnic University, 2018, 32(6): 739-744. | |
[11] | 乔东平, 裴杰, 李浩, 等. 改进蚁群算法求解TSP问题研究[J]. 机械设计与制造, 2019(10): 144-149. |
QIAO D P, PEI J, LI H, et al. Research on improving ant colony algorithm to solve TSP problem[J]. Machinery De-sign & Manufacture, 2019(10): 144-149. | |
[12] | 刘振, 王亚蛟. 一种记忆区间蚁群算法及其仿真分析[J]. 舰船电子工程, 2019, 39(9): 27-31. |
LIU Z, WANG Y J. Memory interval ant colony optimization algorithm and its simulation[J]. Ship Electronic Engineering, 2019, 39(9): 27-31. | |
[13] | 卜新苹, 苏虎, 邹伟, 等. 基于非均匀环境建模与三阶Bezier曲线的平滑路径规划[J]. 自动化学报, 2017, 43(5): 710-724. |
BU X P, SU H, ZOU W, et al. Smooth path planning based on non-uniformly modeling and cubic bezier curves[J]. Acta Automatica Sinica, 2017, 43(5): 710-724. | |
[14] | 吕顺风, 马科. 蚁群-鱼群混合算法在差异工件批调度中的应用[J]. 计算机系统应用, 2018, 27(1): 162-167. |
LV S F, MA K. Application of ant colony hybrid algorithm in batch scheduling of differentiated jobs[J]. Computer Sys-tems & Applications, 2018, 27(1): 162-167. | |
[15] |
OSABA E, DEL J, SADOLLAH A, et al. A discrete water cycle algorithm for solving the symmetric and asymmetric traveling salesman problem[J]. Applied Soft Computing, 2018, 71: 277-290.
DOI URL |
[16] | 张松灿, 普杰信, 司彦娜, 等. 基于种群相似度的自适应改进蚁群算法及应用[J]. 计算机工程与应用, 2021, 57(8): 70-77. |
ZHANG S C, PU J X, SI Y N, et al. Adaptive improved ant colony algorithm based on population similarity and its app-lication[J]. Computer Engineering and Applications, 2021, 57(8): 70-77. | |
[17] | 李宪强, 马戎, 张伸, 等. 蚁群算法的改进设计及在航迹规划中的应用[J]. 航空学报, 2020, 41(S2): 210-216. |
LI X Q, MA R, ZHANG S, et al. Improved design of ant colony algorithm and its application in path planning[J]. Acta Aeronautica ET Astronautica Sinica, 2020, 41(S2): 210-216. | |
[18] | 张德惠, 游晓明, 刘升. 融合猫群算法的动态分组蚁群算法[J]. 计算机科学与探索, 2020, 14(5): 880-891. |
ZHANG D H, YOU X M, LIU S. Dynamic grouping ant colony algorithm combined with cat swarm optimization[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(5): 880-891. | |
[19] | 潘晗, 游晓明, 刘升. 考虑动态导向与邻域交互的双蚁型算法[J]. 计算机科学与探索, 2020, 14(6): 1005-1016. |
PAN H, YOU X M, LIU S. Double-type ant colony algo-rithm considering dynamic guidance and neighborhood interaction[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(6): 1005-1016. |
[1] | 陈斌, 刘卫国. 基于SAC模型的改进遗传算法求解TSP问题[J]. 计算机科学与探索, 2021, 15(9): 1680-1693. |
[2] | 莫亚东, 游晓明, 刘升. 融合奖惩学习策略的动态分级蚁群算法[J]. 计算机科学与探索, 2021, 15(9): 1703-1716. |
[3] | 刘一凡, 游晓明, 刘升. 基于动态重组和协同交流策略的蚁群优化算法[J]. 计算机科学与探索, 2021, 15(8): 1511-1525. |
[4] | 孟静雯,游晓明,刘升. 结合协同机制与动态调控策略的双蚁群算法[J]. 计算机科学与探索, 2021, 15(11): 2206-2221. |
[5] | 殷绍伟, 彭力, 戴菲菲. 融合改进A*蚁群和滚动窗口法的平滑路径规划[J]. 计算机科学与探索, 2021, 15(10): 1969-1979. |
[6] | 潘晗,游晓明,刘升. 考虑动态导向与邻域交互的双蚁型算法[J]. 计算机科学与探索, 2020, 14(6): 1005-1016. |
[7] | 张德惠,游晓明,刘升. 融合猫群算法的动态分组蚁群算法[J]. 计算机科学与探索, 2020, 14(5): 880-891. |
[8] | 冯志雨,游晓明,刘升. 分层递进的改进聚类蚁群算法解决TSP问题[J]. 计算机科学与探索, 2019, 13(8): 1280-1294. |
[9] | 郭羽含,胡芳霞. 考虑匹配可行性的长期合乘问题建模与求解[J]. 计算机科学与探索, 2019, 13(11): 1894-1910. |
[10] | 朱宏伟,游晓明,刘升. 协同过滤策略的异构双种群蚁群算法[J]. 计算机科学与探索, 2019, 13(10): 1754-1767. |
[11] | 任珂欣,王兴伟,马连博,黄敏. 蚁群分工启发的ICN负载均衡机制[J]. 计算机科学与探索, 2018, 12(7): 1109-1116. |
[12] | 王纯子,郭伟,张斌. 求解非线性混合整数规划的算法设计与仿真[J]. 计算机科学与探索, 2013, 7(9): 854-864. |
[13] | 陈光鹏+, 杨育彬. 利用蚁群算法的记忆式图像检索方法[J]. 计算机科学与探索, 2011, 5(1): 32-37. |
[14] | 冀俊忠,刘椿年,黄 振. 蚁群算法中信息素增量和扩散模型的研究*[J]. 计算机科学与探索, 2007, 1(1): 87-94. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||