计算机科学与探索 ›› 2022, Vol. 16 ›› Issue (6): 1390-1404.DOI: 10.3778/j.issn.1673-9418.2011095

• 人工智能 • 上一篇    下一篇

结合价格波动策略与动态回溯机制的蚁群算法

赵家波1, 游晓明1,+(), 刘升2   

  1. 1. 上海工程技术大学 电子电气学院,上海 201620
    2. 上海工程技术大学 管理学院,上海 201620
  • 收稿日期:2020-11-30 修回日期:2021-03-08 出版日期:2022-06-01 发布日期:2021-03-25
  • 通讯作者: + E-mail: yxm6301@163.com
  • 作者简介:赵家波(1997—),男,河南信阳人,硕士研究生,主要研究方向为智能算法、移动机器人路径规划、嵌入式系统。
    游晓明(1963—),女,江苏兴化人,博士,教授,硕士生导师,主要研究方向为群智能系统、分布式并行处理、进化算法。
    刘升(1966—),男,湖北大冶人,博士,教授,硕士生导师,主要研究方向为量子启发式进化算法、分布式并行处理、进化算法。
  • 基金资助:
    国家自然科学基金(61673258);国家自然科学基金(61075115)

Ant Colony Algorithm Based on Price Fluctuation Strategy and Dynamic Backtracking Mechanism

ZHAO Jiabo1, YOU Xiaoming1,+(), LIU Sheng2   

  1. 1. College of Electronic & Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
    2. School of Management, Shanghai University of Engineering Science, Shanghai 201620, China
  • Received:2020-11-30 Revised:2021-03-08 Online:2022-06-01 Published:2021-03-25
  • About author:ZHAO Jiabo, born in 1997, M.S. candidate. His research interests include intelligent algorithm, path planning of mobile robot and embedded system.
    YOU Xiaoming, born in 1963, Ph.D., professor, M.S. supervisor. Her research interests include swarm intelligent systems, distributed parallel processing and evolutionary computing.
    LIU Sheng, born in 1966, Ph.D., professor, M.S. supervisor. His research interests include quantum inspired evolutionary computation, distributed parallel processing and evolutionary computing.
  • Supported by:
    National Natural Science Foundation of China(61673258);National Natural Science Foundation of China(61075115)

摘要:

针对传统蚁群算法在旅行商问题(TSP)中易陷入局部最优、收敛速度较慢等问题,提出一种结合价格波动策略与动态回溯机制的蚁群算法。在价格波动策略中,结合时间序列思想将蚁群算法完整迭代周期进行分类,并根据价格波动平衡,将影响价格波动的供求关系进行匹配。通过分析算法在不同分类中的不同需求,对信息素挥发因子进行自适应动态供给,加快算法收敛速度的同时改善解的多样性。当价格波动策略的供给关系无法实现平衡时,算法将面临局部最优问题,此时引入动态回溯机制,以迭代最优蚂蚁的个体相似度作为标准,将路径信息素回溯至相似度差异显著的时期,在保证收敛速度的同时能够有效跳出局部最优。通过MATLAB对TSP中的不同测试集进行仿真,结果表明该算法在保证收敛速度的基础上,有效提高了解的质量,在中大规模城市集上较好地平衡了多样性与收敛速度的关系。

关键词: 蚁群算法, 价格波动策略, 动态回溯机制, 个体相似度, 旅行商问题(TSP)

Abstract:

In order to solve the problems of traditional ant colony algorithm in traveling salesman problem (TSP), such as easy to fall into local optimum and slow convergence speed, this paper proposes an ant colony algorithm based on price fluctuation strategy and dynamic backtracking mechanism. In the price fluctuation strategy, the complete iteration period of ant colony algorithm is classified according to the idea of time series. According to the balance of price fluctuation, the supply-demand relationship that affects the price fluctuation is matched. By analyzing different demands of the algorithm in different classifications, the pheromone volatilization factor is adaptively and dynamically supplied to accelerate the convergence speed of the algorithm and ensure the diversity of the algorithm solution. When the supply relationship of the price fluctuation strategy can not be balanced, the algorithm will face local optimization problem. In this case, the dynamic backtracking mechanism is introduced to trace the path pheromone to the period of significant similarity difference based on the individual similarity of iterative optimal ant, which can effectively jump out of the local optimum while ensuring the convergence speed. Different test sets in TSP are simulated by MATLAB. The results show that the algorithm can effectively improve the quality of solution and balance the relationship between diversity and convergence speed on the basis of ensuring the convergence speed in medium and large scale city set.

Key words: ant colony algorithm, price fluctuation strategy, dynamic backtracking mechanism, individual similarity, traveling salesman problem (TSP)

中图分类号: