[1] |
严骏驰, 杨小康. 计算机视觉中图匹配研究进展: 从二图匹配迈向多图匹配[J]. 控制理论与应用, 2018, 35(12): 1715-1724.
|
|
YAN J C, YANG X K. Recent advance on graph matching in computer vision: from two-graph matching to multi-graph matching[J]. Control Theory & Applications, 2018, 35(12): 1715-1724.
|
[2] |
李智杰, 李昌华, 刘欣, 等. 融合拓扑特征和领域特征的非精确图匹配算法[J]. 计算机应用与软件, 2015, 32(10): 164-167.
|
|
LI Z J, LI C H, LIU X, et al. Inexact graph matching algo-rithm integrating topological features and domain features[J]. Computer Applications and Software, 2015, 32(10): 164-167.
|
[3] |
ZHANG J K, QIAN K. Graph matching using conformal module[J]. EURASIP Journal on Image and Video Processing, 2019: 26.
|
[4] |
刘国庆, 卢桂馥, 周胜, 等. 非负低秩图嵌入算法[J]. 计算机科学与探索, 2020, 14(3): 502-512.
|
|
LIU G Q, LU G F, ZHOU S, et al. Non-negative low rank graph embedding algorithm[J]. Journal of Frontiers of Com-puter Science and Technology, 2020, 14(3): 502-512.
|
[5] |
许文, 宋文爱, 富丽贞, 等. 面向大规模图数据的分布式子图匹配算法[J]. 计算机科学, 2019, 46(4): 28-35.
|
|
XU W, SONG W A, FU L Z, et al. Distributed subgraph matching algorithm for large scale graph data[J]. Computer Science, 2019, 46(4): 28-35.
|
[6] |
ZHOU Z H, FENG J. Deep forest: towards an alternative to deep neural networks[J]. arXiv:1702.08835, 2017.
|
[7] |
张西宁, 郭清林, 刘书语. 深度学习技术及其故障诊断应用分析与展望[J]. 西安交通大学学报, 2020, 54(12): 1-13.
|
|
ZHANG X N, GUO Q L, LIU S Y. Analysis and prospect of deep learning technology and its fault diagnosis applica-tion[J]. Journal of Xi’an Jiaotong University, 2020, 54(12): 1-13.
|
[8] |
佟彤, 罗森林, 潘丽敏, 等. 基于深度森林的量表数据挖掘方法[J]. 电子设计工程, 2020, 28(13): 88-91.
|
|
TONG T, LUO S L, PAN L M, et al. Deep forest based inven-tory data mining method[J]. Electronic Design Engineering, 2020, 28(13): 88-91.
|
[9] |
葛绍林, 叶剑, 何明祥. 基于深度森林的用户购买行为预测模型[J]. 计算机科学, 2019, 46(9): 190-194.
|
|
GE S L, YE J, HE M X. Prediction model of user purchase behavior based on deep forest[J]. Computer Science, 2019, 46(9): 190-194.
|
[10] |
陈寅栋, 李朝锋, 桑庆兵. 卷积神经网络结合深度森林的无参考图像质量评价[J]. 激光与光电子学进展, 2019, 56(11): 123-129.
|
|
CHEN Y D, LI C F, SANG Q B. Quality assessment without reference images based on convolution neural network and deep forest[J]. Laser & Optoelectronics Progress, 2019, 56(11): 123-129.
|
[11] |
余星达, 陈文杰, 王鼎, 等. 非接触式身份识别的深度学习算法[J]. 西安交通大学学报, 2019, 53(4): 122-127.
|
|
YU X D, CHEN W J, WANG D, et al. A deep learning algori-thm for contactless human identification[J]. Journal of Xi’an Jiaotong University, 2019, 53(4): 122-127.
|
[12] |
李昌华, 崔李扬, 李智杰. 用于非精确图匹配的改进GCN模型[J]. 计算机科学与探索, 2020, 14(8): 1397-1408.
|
|
LI C H, CUI L Y, LI Z J. Improved GCN model for inexact graph matching[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(8): 1397-1408.
|
[13] |
乔安, 毛力, 孙俊. 基于改进深度森林的小目标检测算法[J]. 传感器与微系统, 2020, 39(5): 125-128.
|
|
QIAO A, MAO L, SUN J. Small target detection algorithm based on improved deep forest[J]. Transducer and Micro-system Technologies, 2020, 39(5): 125-128.
|
[14] |
ZHANG Q, XU Y. Block-based selection random forest for texture classification using multi-fractal spectrum feature[J]. Neural Computing and Applications, 2016, 27(3): 593-602.
DOI
URL
|
[15] |
UTKIN L V. An imprecise deep forest for classification[J]. Expert Systems with Applications, 2020, 141: 112978.
DOI
URL
|
[16] |
宫振华, 王嘉宁, 苏翀. 一种加权的深度森林算法[J]. 计算机应用与软件, 2019, 36(2): 274-278.
|
|
GONG Z H, WANG J N, SU C. A weighted deep forest algorithm[J]. Computer Applications and Software, 2019, 36(2): 274-278.
|
[17] |
UTKIN L V, KOVALEV M, MELDO A A. A deep forest classifier with weights of class probability distribution subsets[J]. Knowledge-Based Systems, 2019, 173: 15-27.
DOI
URL
|
[18] |
尹儒, 门昌骞, 王文剑. 一种模型决策森林算法[J]. 计算机科学与探索, 2020, 14(1): 108-116.
|
|
YIN R, MEN C Q, WANG W J. Model decision forest algo-rithm[J]. Journal of Frontiers of Computer Science and Tech-nology, 2020, 14(1): 108-116.
|