[1] WANG S, ZHANG J, HAN T X, et al. Sketch-based image retrieval through hypothesis-driven object boundary selection with HLR descriptor[J]. IEEE Transactions on Multimedia, 2015, 17(7): 1045-1057.
[2] 张萍萍, 李童, 李茹, 等. 一种改进的Sobel图像边缘检测算法及其实现[J]. 电视技术, 2022, 46(5): 42-45.
ZHANG P P, LI T, LI R, et al. An improved Sobel image edge detection algorithm and its implementation[J]. TV Technology, 2022, 46(5): 42-45.
[3] SHEN X Z, ZENG W, GUO Y L, et al. Edge detection algorithm of plant leaf image based on improved Canny[C]//Proceedings of the 6th International Conference on Intelligent Computing and Signal Processing, Xi’an, Apr 9-11, 2021. Piscataway: IEEE, 2021: 342-345.
[4] WANG L, SUN Y. Improved Canny edge detection algori-thm[C]//Proceedings of the 2021 2nd International Confer-ence on Computer Science and Management Technology, Shanghai, Nov 2-14, 2021. Piscataway: IEEE, 2021: 414-417.
[5] SHEN W, WANG X G, WANG Y, et al. DeepContour: a deep convolutional feature learned by positive-sharing loss for contour detection[C]//Proceedings of the 2015 IEEE Confe-rence on Computer Vision and Pattern Recognition, Boston, Jun 7-12, 2015. Washington: IEEE Computer Society, 2015: 3982-3991.
[6] BERTASIUS G, SHI J B, TORRESANI L. DeepEdge: a multi- scale bifurcated deep network for top-down contour detec-tion[C]//Proceedings of the 2015 IEEE Conference on Com-puter Vision and Pattern Recognition, Boston, Jun 7-12, 2015. Washington: IEEE Computer Society, 2015: 4380-4389.
[7] ZHANG X, CHEN S, ZHU P, et al. Spatial pooling graph convolutional network for hyperspectral image classifica-tion[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-15.
[8] XU Z, YU H, ZHENG K, et al. A novel classification framework for hyperspectral image classification based on multiscale spectral-spatial convolutional network[C]//Proce-edings of the 2021 11th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing, Amst-erdam, Mar 24-26, 2021. Piscataway: IEEE, 2021: 1-5.
[9] DIVYA S, ADEPU B, KAMAKSHI P. Image enhancement and classification of CIFAR-10 using convolutional neural networks[C]//Proceedings of the 2022 4th International Conference on Smart Systems and Inventive Technology, Tirunelveli, Jan 20-22, 2022. Piscataway: IEEE, 2022: 1-7.
[10] TAO Y, ZHAO Z Y, ZHANG J, et al. Low-altitude small-sized object detection using lightweight feature-enhanced convolutional neural network[J]. Journal of Systems Engin-eering and Electronics, 2021, 32(4): 841-853.
[11] 王玲敏, 段军, 辛立伟. 引入注意力机制的YOLOv5安全帽佩戴检测方法[J]. 计算机工程与应用, 2022, 58(9): 303-312.
WANG L M, DUAN J, XIN L W. YOLOv5 helmet wear detection method with introduction of attention mechanism[J]. Computer Engineering and Applications, 2022, 58(9): 303-312.
[12] 杨永波, 李栋. 改进YOLOv5的轻量级安全帽佩戴检测算法[J]. 计算机工程与应用, 2022, 58(9): 201-207.
YANG Y B, LI D. Lightweight helmet wearing detection algorithm of improved YOLOv5[J]. Computer Engineering and Applications, 2022, 58(9): 201-207.
[13] 栗俊杰, 毛鹏军, 淡文慧, 等. 基于YOLOv2-Tiny的无人机火灾检测与云台跟踪研究[J]. 消防科学与技术, 2022, 41(1): 5-11.
LI J J, MAO P J, DAN W H, et al. Research on UAV fire detection and PTZ tracking based on YOLOv2-Tiny[J]. Fire Science and Technology, 2022, 41(1): 5-11.
[14] YIN R, CHENG Y, WU H, et al. FusionLane: multi-sensor fusion for lane marking semantic segmentation using deep neural networks[J]. IEEE Transactions on Intelligent Trans-portation Systems, 2022, 23(2): 1543-1553.
[15] WANG R, QIU K. Fine-grained remote sensing semantic segmentation method under multi-stage supervision learn-ing[C]//Proceedings of the 2022 14th International Confer-ence on Measuring Technology and Mechatronics Automation, Changsha, Jan 15-16, 2022. Piscataway: IEEE, 2022: 361-365.
[16] XIE S, TU Z. Holistically-nested edge detection[C]//Proce-edings of the 2015 IEEE International Conference on Computer Vision, Santiago, Dec 7-13, 2015. Washington: IEEE Computer Society, 2015: 1395-1403.
[17] LIU Y, CHENG M M, HU X, et al. Richer convolutional features for edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(8): 1939-1946.
[18] WANG Y, ZHAO X, HUANG K. Deep crisp boundaries[C]//Proceedings of the 2017 IEEE Conference on Com-puter Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 1724-1732.
[19] ARBELáEZ P, MAIRE M, FOWLKES C, et al. Contour detection and hierarchical image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(5): 898-916.
[20] SILBERMAN N, HOIEM D, KOHLI P, et al. Indoor segmentation and support inference from RGBD images[C]//LNCS 7576: Proceedings of the 12th European Confe-rence on Computer Vision, Florence, Oct 7-13, 2012. Berlin, Heidelberg: Springer, 2012: 746-760.
[21] 黄胜, 冉浩杉. 基于语义信息的精细化边缘检测方法[J]. 计算机工程, 2022, 48(3): 204-210.
HUANG S, RAN H S. Refined edge detection method based on semantic information[J]. Computer Engineering, 2022, 48(3): 204-210.
[22] 岳欣华, 邓彩霞, 张兆茹. BP神经网络与形态学融合的边缘检测算法[J]. 哈尔滨理工大学学报, 2021, 26(5): 83-90.
YUE X H, DENG C X, ZHANG Z R. BP neural network fuse with morphology edge detection method[J]. Journal of Harbin University of Science and Technology, 2021, 26(5): 83-90.
[23] 申嘉锡, 齐华, 王晨. Canny算子对图像边缘检测的一种改进[J]. 现代计算机, 2022, 28(3): 46-49.
SHEN J X, QI H, WANG C. The improvement of tradi-tional Canny image edge detection algorithm[J]. Modern Computer, 2022, 28(3): 46-49.
[24] HE J, ZHANG S, YANG M, et al. BDCN: bi-directional cascade network for perceptual edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(1): 100-113.
[25] DENG R, SHEN C, LIU S, et al. Learning to predict crisp boundaries[C]//LNCS 11210: Proceedings of the 15th Euro-pean Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 570-586.
[26] CAO Y J, LIN C, LI Y J. Learning crisp boundaries using deep refinement network and adaptive weighting loss[J]. IEEE Transactions on Multimedia, 2021, 23: 761-771.
[27] HUAN L, XUE N, ZHENG X, et al. Unmixing convol-utional features for crisp edge detection[J]. IEEE Transa-ctions on Pattern Analysis and Machine Intelligence, 2022,44(10): 6602-6609.
[28] MARTIN D R, FOWLKES C C, MALIK J. Learning to detect natural image boundaries using local brightness, color, and texture cues[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(5): 530-549.
[29] DOLLAR P, ZITNICK C L. Fast edge detection using structured forests[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(8): 1558-1570.
[30] LONG J, SHELHAMER E, DARRELL T. Fully convolu-tional networks for semantic segmentation[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, Jun 7-12, 2015. Washington: IEEE Computer Society, 2015: 3431-3440.
[31] PASZKE A. Automatic differentiation in PyTorch[C]//Proceedings of the 2017 31st Conference and Workshop on Neural Information Processing Systems, Long Beach, Dec 4-9, 2017.
[32] HALLMAN S, FOWLKES C C. Oriented edge forests for boundary detection[C]//Proceedings of the 2015 IEEE Con-ference on Computer Vision and Pattern Recognition, Boston, Jun 7-12, 2015. Washington: IEEE Computer Soc-iety, 2015: 1732-1740.
[33] BERTASIUS G, SHI J B, TORRESANI L. High-for-low and low-for high: efficient boundary detection from deep object features and its applications to high-level vision[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Dec 7-13, 2015. Washington: IEEE Computer Society, 2015: 504-512.
[34] BAO S S, HUANG Y, XU G Y, et al. Bidirectional multiscale refinement network for crisp edge detection[J].IEEE Access, 2022, 10: 26282-26293.
[35] 杨红菊, 王昱蓉. FMLED: 细粒度级多尺度特征表示的轻量级边缘检测方法[J]. 小型微型计算机系统, 2023, 44(4): 812-817.
YANG H J, WANG Y R. Fine-grained multi-scale feature representation lightweight network for edge detection[J]. Journal of Chinese Computer Systems, 2023, 44(4): 812-817.
[36] 郑恩壮, 钟宝江. 各向异性的多尺度边缘检测算法[J]. 激光与光电子学进展, 2022, 59(4): 282-290.
ZHENG E Z, ZHONG B J. Anisotropic multi-scale edge detection algorithm[J]. Laser & Optoelectronics Progress, 2022, 59(4): 282-290. |