[1] 沈焕锋, 艾廷华, 刘耀林, 等. 影像超分辨率重建技术的发展与应用现状[J]. 测控技术, 2009, 28(6): 7.
SHEN H F, AI T H, LIU Y L, et al. Development and application of super resolution image reconstruction technique[J]. Measurement & Control Technology, 2009, 28(6): 7.
[2] GLASNER D, BAGON S, IRANI M. Super-resolution from a single image[C]//Proceedings of the 2009 IEEE 12th International Conference on Computer Vision. Piscataway: IEEE, 2009: 349-356.
[3] RHEE S, KANG M G. Discrete cosine transform based regularized high-resolution image reconstruction algorithm[J]. Optical Engineering, 1999, 38(8): 1348-1356.
[4] ELAD M, FEUER A. Restoration of a single superresolution image from several blurred, noisy, and undersampled measured images[J]. IEEE Transactions on Image Processing, 1997, 6(12): 1646-1658.
[5] STARK H, OSKOUI P. High-resolution image recovery from image-plane arrays, using convex projections[J]. Journal of the Optical Society of America A, 1989, 6(11): 1715-1726.
[6] DONG C, LOY C C, TANG X. Accelerating the super-resolution convolutional neural network[C]//Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 11-14, 2016. Cham: Springer, 2016: 391-407.
[7] LIEBEL L, K?RNER M. Single-image super resolution for multispectral remote sensing data using convolutional neural networks[J]. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 2016, 41.
[8] LEI S, SHI Z, ZOU Z. Super-resolution for remote sensing images via local-global combined network[J]. IEEE Geo-science and Remote Sensing Letters, 2017, 14(8): 1243-1247.
[9] LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2017: 136-144.
[10] KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2016: 1646-1654.
[11] HAUT J M, PAOLETTI M E, FERNáNDEZ-BELTRAN R, et al. Remote sensing single-image superresolution based on a deep compendium model[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(9): 1432-1436.
[12] XU W, XU G L, WANG Y, et al. High quality remote sensing image super-resolution using deep memory connected network[C]//Proceedings of the 2018 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE, 2018: 8889-8892.
[13] 张帅勇, 刘美琴, 姚超, 等. 分级特征反馈融合的深度图像超分辨率重建[J]. 自动化学报, 2022, 48(4): 992-1003.
ZHANG S Y, LIU M Q, YAO C, et al. Hierarchical feature feedback network for depth super-resolution reconstruction[J]. Acta Automatica Sinica, 2022, 48(4): 992-1003.
[14] 章伟帆, 曾庆鹏. 多重放大的医学图像超分辨率重建[J]. 计算机工程与应用, 2022, 58(23): 230-237.
ZHANG W F, CENG Q P. Multi-scale medical image super-resolution reconstruction[J]. Computer Engineering and Applications, 2022, 58(23): 230-237.
[15] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2018: 7132-7141.
[16] WANG X, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2018: 7794-7803.
[17] ZHANG Y, LI K, LI K, et al. Image super-resolution using very deep residual channel attention networks[C]//Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 286-301.
[18] DAI T, CAI J, ZHANG Y, et al. Second-order attention network for single image super-resolution[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 11065-11074.
[19] MEI Y, FAN Y, ZHOU Y, et al. Image super-resolution with cross-scale non-local attention and exhaustive self-exemplars mining[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 5690-5699.
[20] 廉炜雯, 吴斌, 张红英, 等. 高效二阶注意力对偶回归网络的超分辨率重建[J]. 计算机工程与应用, 2022, 58(20): 220-228.
LIAN W W, WU B, ZHANG H Y, et al. Super-resolution reconstruction of efficient second-order attention dual regression network[J]. Computer Engineering and Applications, 2022, 58(20): 220-228.
[21] DING L, TANG H, BRUZZONE L. LANet: local attention embedding to improve the semantic segmentation of remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(1): 426-435.
[22] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2016: 770-778.
[23] YANG Y, NEWSAM S. Bag-of-visual-words and spatial extensions for land-use classification[C]//Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York: ACM, 2010: 270-279.
[24] LONG Y, XIA G S, LI S, et al. On creating benchmark dataset for aerial image interpretation: reviews, guidances, and million-aid[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 4205-4230.
[25] PONOMARENKO N, IEREMEIEV O, LUKIN V, et al. Modified image visual quality metrics for contrast change and mean shift accounting[C]//Proceedings of the 2011 11th International Conference The Experience of Designing and Application of CAD Systems in Microelectronics. Piscataway: IEEE, 2011: 305-311.
[26] WANG Z, LI Q. Information content weighting for perceptual image quality assessment[J]. IEEE Transactions on Image Processing, 2010, 20(5): 1185-1198.
[27] SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Washington: IEEE Computer Society, 2017: 618-626. |