[1] AMODEI D, OLAH C, STEINHARDT J, et al. Concrete pro-blems in AI safety[J]. arXiv:1606.06565, 2016.
[2] SZEGEDY C, ZAREMBA W, SUTSKEVER I, et al. Intriguing properties of neural networks[J]. arXiv:1312.6199, 2013.
[3] ZHANG Q, HU S, SUN J, et al. On adversarial robustness of trajectory prediction for autonomous vehicles[C]//Pro-ceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, Jun 18-24, 2022. Piscataway: IEEE, 2022: 15159-15168.
[4] ALI W, QURESHI E, FAROOQI O A, et al. Pneumonia de-tection in chest X-ray images: handling class imbalance[J]. arXiv:2301.08479, 2023.
[5] TIAN Y, NI Z, CHEN B, et al. Just noticeable difference modeling for face recognition system[J]. arXiv:2209.05856, 2022.
[6] WIYATNO R R, XU A, DIA O, et al. Adversarial examples in modern machine learning: a review[J]. arXiv:1911.05268, 2019.
[7] 白祉旭, 王衡军, 郭可翔. 基于深度神经网络的对抗样本技术综述[J]. 计算机工程与应用, 2021, 57(23): 61-70.
BAI Z X, WANG H J, GUO K X. Summary of adversarial examples techniques based on deep neural networks[J]. Com-puter Engineering and Applications, 2021, 57(23): 61-70.
[8] 张田, 杨奎武, 魏江宏, 等. 面向图像数据的对抗样本检测与防御技术综述[J]. 计算机研究与发展, 2022, 59(6):1315-1328.
ZHANG T, YANG G W, WEI J H, et al. Survey on detec-ting and defending adversarial examples for image data[J]. Journal of Computer Research and Development, 2022, 59(6): 1315-1328.
[9] GOODFELLOW I J, SHLENS J, SZEGEDY C. Explaining and harnessing adversarial examples[J]. arXiv:1412.6572, 2014.
[10] KURAKIN A, GOODFELLOW I J, BENGIO S. Adversarial examples in the physical world[C]//Proceedings of the 5th International Conference on Learning Representations, Toulon, Apr 24-26, 2017: 1-15.
[11] TRAMèR F, KURAKIN A, PAPERNOT N, et al. Ensemble adversarial training: attacks and defenses[J]. arXiv:1705.07204, 2017.
[12] DONG Y, LIAO F, PANG T, et al. Boosting adversarial attacks with momentum[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-23, 2018. Washington: IEEE Computer Society, 2018: 9185-9193.
[13] SCHWINN L, NGUYEN A, RAAB R, et al. Dynamically sampled nonlocal gradients for stronger adversarial attacks[C]//Proceedings of the 2021 International Joint Conference on Neural Networks, Shenzhen, Jul 18-22, 2021. Piscataway: IEEE, 2021: 1-8.
[14] PAPERNOT N, MCDANIEL P, WU X, et al. Distillation as a defense to adversarial perturbations against deep neural networks[C]//Proceedings of the 2016 IEEE Symposium on Security and Privacy, California, May 23-25, 2016. Piscataway: IEEE, 2016: 582-597.
[15] CARLINI N, WAGNER D. Towards evaluating the robust-ness of neural networks[C]//Proceedings of the 2017 IEEE Symposium on Security and Privacy, San Jose, May 22-26, 2017. Washington: IEEE Computer Society, 2017: 39-57.
[16] MOOSAVI-DEZFOOLI S M, FAWZI A, FROSSARD P. DeepFool: a simple and accurate method to fool deep neural networks[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 2574-2582.
[17] MOOSAVI-DEZFOOLI S M, FAWZI A, FAWZI O, et al. Universal adversarial perturbations[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 1765-1773.
[18] ILYAS A, SANTURKAR S, TSIPRAS D, et al. Adversarial examples are not bugs, they are features[C]//Advances in Neural?Information?Processing?Systems?32,?Vancouver, Dec 8-14, 2019: 125-136.
[19] WANG Z, GUO H, ZHANG Z, et al. Feature importance-aware transferable adversarial attacks[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Oct 10-17, 2021. Piscataway: IEEE, 2021: 7639-7648.
[20] FEINMAN R, CURTIN R R, SHINTRE S, et al. Detecting adversarial samples from artifacts[J]. arXiv:1703.00410, 2017.
[21] PAPERNOT N, MCDANIEL P, JHA S, et al. The limita-tions of deep learning in adversarial settings[C]//Procee-dings of the 2016 IEEE European Symposium on Security and Privacy, Saarbrücken, Mar 21-24, 2016. Piscataway: IEEE, 2016: 372-387.
[22] MADRY A, MAKELOV A, SCHMIDT L, et al. Towards deep learning models resistant to adversarial attacks[J]. arXiv:1706.06083, 2017.
[23] ATHALYE A, CARLINI N, WAGNER D. Obfuscated gradients give a false sense of security: circumventing defenses to adversarial examples[C]//Proceedings of the 2018 International Conference on Machine Learning, Stockholm, Jul 10-15, 2018. New York: ACM, 2018: 274-283.
[24] UESATO J, O??DONOGHUE B, KOHLI P, et al. Adver-sarial risk and the dangers of evaluating against weak attacks[C]//Proceedings of the 2018 International Conference on Machine Learning, Stockholm, Jul 10-15, 2018. New York: ACM, 2018: 5025-5034.
[25] INKAWHICH N, LIANG K J, CARIN L, et al. Trans-ferable perturbations of deep feature distributions[J]. arXiv:2004.12519, 2020.
[26] SHI C, HOLTZ C, MISHNE G. Online adversarial purifica-tion based on self-supervision[J]. arXiv:2101.09387, 2021.
[27] ANDRIUSHCHENKO M, CROCE F, FLAMMARION N, et al. Square attack: a query-efficient black-box adversarial attack via random search[C]//LNCS 12368: Proceedings of the 2020 European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 484-501.
[28] BRENDEL W, RAUBER J, BETHGE M. Decision-based adversarial attacks: reliable attacks against black-box machine learning models[J]. arXiv:1712.04248, 2017.
[29] WANG D, LIN J, WANG Y G. Query-efficient adversarial attack based on Latin hypercube sampling[C]//Proceedings of the 2022 IEEE International Conference on Image Pro-cessing, Bordeaux, Oct 16-19, 2022. Piscataway: IEEE, 2022: 546-550.
[30] PAPERNOT N, MCDANIEL P, GOODFELLOW I, et al. Practical black-box attacks against machine learning[C]//Proceedings of the 2017 ACM Asia Conference on Com-puter and Communications Security, Abu Dhabi, Apr 2-6, 2017. New York: ACM, 2017: 506-519.
[31] NASEER M, KHAN S H, RAHMAN S, et al. Task-gene-ralizable adversarial attack based on perceptual metric[J]. arXiv:1811.09020, 2018.
[32] GANESHAN A, BS V, BABU R V. FDA: feature disruptive attack[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 8069-8079.
[33] ZHANG J, WU W, HUANG J, et al. Improving adversarial transferability via neuron attribution-based attacks[C]//Pro-ceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, Jun 18-24, 2022. Piscataway: IEEE, 2022: 14993-15002.
[34] SHAFAHI A, NAJIBI M, GHIASI A, et al. Adversarial training for free![C]//Advances in Neural Information Processing Systems 32, Vancouver, Dec 8-14, 2019: 3353-3364.
[35] TSIPRAS D, SANTURKAR S, ENGSTROM L, et al. Robust-ness may be at odds with accuracy[J]. arXiv:1805.12152, 2018.
[36] ZHANG H, YU Y, JIAO J, et al. Theoretically principled trade-off between robustness and accuracy[C]//Proceedings of the 36th International Conference on Machine Learning, Long Beach, Jun 9-15, 2019: 7472-7482.
[37] CHEN T, ZHANG Z, LIU S, et al. Robust overfitting may be mitigated by properly learned smoothening[C]//Procee-dings of the 9th International Conference on Learning Re-presentations, Austria, May 3-7, 2021: 1-19.
[38] JIA X, ZHANG Y, WU B, et al. LAS-AT: adversarial trai-ning with learnable attack strategy[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recog-nition, New Orleans, Jun 18-24, 2022. Piscataway: IEEE, 2022: 13398-13408.
[39] LIU A, LIU X, YU H, et al. Training robust deep neural networks via adversarial noise propagation[J]. IEEE Tran-sactions on Image Processing, 2021, 30: 5769-5781.
[40] ZHANG H, CISSE M, DAUPHIN Y N, et al. mixup: beyond empirical risk minimization[J]. arXiv:1710.09412, 2017.
[41] VERMA V, LAMB A, BECKHAM C, et al. Manifold mixup: better representations by interpolating hidden states[C]//Pro-ceedings of the 2019 International Conference on Machine Learning, Long Beach, Jun 9-15, 2019. New York: ACM, 2019: 6438-6447.
[42] GU S, RIGAZIO L. Towards deep neural network architec-tures robust to adversarial examples[J]. arXiv:1412.5068, 2014.
[43] MUTHUKUMAR R, SULAM J. Adversarial robustness of sparse local lipschitz predictors[J]. arXiv:2202.13216, 2022.
[44] ZHAO P, CHEN P Y, DAS P, et al. Bridging mode con-nectivity in loss landscapes and adversarial robustness[J]. arXiv:2005.00060, 2020.
[45] MOK J, NA B, CHOE H, et al. AdvRush: searching for adversarially robust neural architectures[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Oct 10-17, 2021. Piscataway: IEEE, 2021: 12302-12312.
[46] MOOSAVI-DEZFOOLI S M, FAWZI A, UESATO J, et al. Robustness via curvature regularization, and vice versa[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 15-20, 2019. Piscataway: IEEE, 2019: 9078-9086.
[47] HENDRYCKS D,GIMPEL K. Early methods for detecting adversarial images[J]. arXiv:1608.00530, 2016.
[48] LEVER J, KRZYWINSKI M, ALTMAN N. Points of signi-ficance: principal component analysis[J]. Nature Methods, 2017, 14(7): 641-643.
[49] METZEN J H, GENEWEIN T, FISCHER V, et al. On detec-ting adversarial perturbations[J]. arXiv:1702.04267, 2017.
[50] XIE C, WANG J, ZHANG Z, et al. Mitigating adversarial effects through randomization[J]. arXiv:1711.01991, 2017.
[51] DUBEY A, MAATEN L, YALNIZ Z, et al. Defense against adversarial images using web-scale nearest-neighbor search[C]//Proceedings of the 2019 IEEE/CVF Conference on Com-puter Vision and Pattern Recognition, Long Beach, Jun 15-20, 2019. Piscataway: IEEE, 2019: 8767-8776.
[52] LIAO F, LIANG M, DONG Y, et al. Defense against adve-rsarial attacks using high-level representation guided denoi-ser[C]//Proceedings of the 2018 IEEE Conference on Com-puter Vision and Pattern Recognition, Salt Lake City, Jun 18-23, 2018. Washington: IEEE Computer Society, 2018: 1778-1787.
[53] MENG D, CHEN H. MagNet: a two-pronged defense agai-nst adversarial examples[C]//Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, New York, Oct 30-Nov 3, 2017. New York: ACM, 2017: 135-147.
[54] SAMANGOUEI P, KABKAB M, CHELLAPPA R. Defense-GAN: protecting classifiers against adversarial attacks using generative models[J]. arXiv:1805.06605, 2018.
[55] NIE W, GUO B, HUANG Y, et al. Diffusion models for adversarial purification[J]. arXiv:2205.07460, 2022. |