计算机科学与探索 ›› 2024, Vol. 18 ›› Issue (5): 1109-1134.DOI: 10.3778/j.issn.1673-9418.2309016
雷钦岚,田萱
出版日期:
2024-05-01
发布日期:
2024-04-29
LEI Qinlan, TIAN Xuan
Online:
2024-05-01
Published:
2024-04-29
摘要: 目前,基于流行的推荐系统成为研究热点。流行度使得推荐效果得到显著提升,而流行偏差带来的马太效应也引发了研究者的广泛关注,同时一些研究者考虑将二者结合作为混合式流行来实现推荐。采用流行这一概念,对流行度、流行偏差和混合式流行进行统一表示。首先介绍流行在推荐领域的应用背景,然后根据不同视角,分别对流行度增强推荐方法、去流行偏差推荐方法和混合式流行推荐方法进行综述。在每类方法中,根据建模的具体子任务或具体策略进行进一步划分,对代表性方法进行分析介绍,评价其优点和局限性等,并详细总结每类方法的方法机制和适用场景,从多方面对不同方法间的联系与区别进行讨论。还介绍了该领域中常用数据集、评价指标和基线算法,并对其中代表性方法进行性能对比分析。最后针对基于流行的推荐研究发展趋势提出一些看法,从多角度对该技术未来的发展难点与热点进行总结与展望。
雷钦岚, 田萱. 基于流行的推荐研究综述[J]. 计算机科学与探索, 2024, 18(5): 1109-1134.
LEI Qinlan, TIAN Xuan. Survey on Popularity Based Recommendation[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(5): 1109-1134.
[1] 田萱, 丁琪, 廖子慧, 等. 基于深度学习的新闻推荐算法研究综述[J]. 计算机科学与探索, 2021, 15(6): 971-998. TIAN X, DING Q, LIAO Z H, et al. Survey on deep learning based news recommendation algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(6): 971-998. [2] WU C, WU F, AN M, et al. Neural news recommendation with attentive multi-view learning[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence, Macao, China, Aug 10-16, 2019. Menlo Park: AAAI, 2019: 3863-3869. [3] WANG J, CHEN Y, WANG Z, et al. Popularity-enhanced news recommendation with multi-view interest representation[C]//Proceedings of the 30th ACM International Conference on Information and Knowledge Management, Queensland, Nov 1-5, 2021. New York: ACM, 2021: 1949-1958. [4] MA Y, MAO J, BA Z, et al. Location recommendation by combining geographical, categorical, and social preferences with location popularity[J]. Information Processing and Management, 2020, 57(4): 102-115. [5] LIN F, JIANG W, ZHANG J, et al. Dynamic popularity-aware contrastive learning for recommendation[C]//Proceedings of the 2021 Asian Conference on Machine Learning, Nov 17-19, 2021: 964-968. [6] SHEN Q, TAO W, ZHANG J, et al. SAR-Net: a scenario-aware ranking network for personalized fair recommendation in hundreds of travel scenarios[C]//Proceedings of the 30th ACM International Conference on Information and Knowledge Management, Queensland, Nov 1-5, 2021. New York: ACM, 2021: 4094-4103. [7] WEI T, FENG F, CHEN J, et al. Model-agnostic counterfactual reasoning for eliminating popularity bias in recommender system[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Singapore, Aug 14-18, 2021. New York: ACM, 2021: 1791-1800. [8] ZHANG Y, FENG F, HE X, et al. Causal intervention for leveraging popularity bias in recommendation[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, Jul 11-15, 2021. New York: ACM, 2021: 11-20. [9] ZHAO Z, CHEN J, ZHOU S, et al. Popularity bias is not always evil: disentangling benign and harmful bias for recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(10): 9920-9931. [10] 丁琪, 田萱, 孙国栋. 基于注意力增强的热点感知新闻推荐模型[J]. 电子学报, 2023, 51(1): 93-104. DING Q, TIAN X, SUN G D. HAN: hotspot-aware attention enhanced news recommendation[J]. Acta Electronica Sinica, 2023, 51(1): 93-104. [11] QI T, WU F, WU C, et al. PP-Rec: news recommendation with personalized user interest and time-aware news popularity[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, Aug 1-6, 2021. Stroudsburg: ACL, 2021: 5457-5467. [12] GE Y, ZHAO S, ZHOU H, et al. Understanding echo chambers in ecommerce recommender systems[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, Jul 25-30, 2020. New York: ACM, 2020: 2261-2270. [13] MEHROTRA R, MCINERNEY J, BOUCHARD H, et al. Towards a fair marketplace: counterfactual evaluation of the trade-off between relevance, fairness & satisfaction in recommendation systems[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management, Torino, Oct 22-26, 2018. New York: ACM, 2018: 2243-2251. [14] CANAMARES R, CASTELLS P. Should I follow the crowd? A probabilistic analysis of the effectiveness of popularity in recommender systems[C]//Proceedings of the 41st International ACM SIGIR Conference on Research and Development in Information Retrieval, Ann Arbor, Jul 8-12, 2018. New York: ACM, 2018: 415-424. [15] PERC M. The Matthew effect in empirical data[J]. Journal of the Royal Society Interface, 2014, 11(98): 369-378. [16] STECK H. Calibrated recommendations[C]//Proceedings of the 12th ACM Conference on Recommender Systems, Vancouver, Oct 2-7, 2018. New York: ACM, 2018: 154-162. [17] ZHU Z, HE Y, ZHAO X, et al. Popularity bias in dynamic recommendation[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Singapore, Aug 14-18, 2021. New York: ACM, 2021: 2439-2449. [18] JI Y, SUN A, ZHANG J, et al. A re-visit of the popularity baseline in recommender systems[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, Jul 25-30, 2020. New York: ACM, 2020: 1749-1752. [19] ELAHI M, KHOLGH D K, KIAROSTAMI M S, et al. Investigating the impact of recommender systems on user-based and item-based popularity bias[J]. Information Processing and Management, 2021, 58(5): 971-998. [20] FU Z, XIAN Y, GENG S, et al. Popcorn: human-in-the-loop popularity debiasing in conversational recommender systems[C]//Proceedings of the 30th ACM International Conference on Information and Knowledge Management, Queensland, Nov 1-5, 2021. New York: ACM, 2021: 494-503. [21] ABDOLLAHPOURI H, MANSOURY M, BURKE R, et al. The connection between popularity bias, calibration, and fairness in recommendation[C]//Proceedings of the 14th ACM Conference on Recommender Systems, Brazil, Sep 22-26, 2020. New York: ACM, 2020: 726-731. [22] ZHANG Y, CHENG D Z, YAO T, et al. A model of two tales: dual transfer learning framework for improved long-tail item recommendation[C]//Proceedings of the Web Conference 2021, Slovenia, Apr 19-23, 2021. New York: ACM, 2021: 2220-2231. [23] LI J, LU K, HUANG Z, et al. On both cold-start and long-tail recommendation with social data[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 33(1): 194-208. [24] PARK Y J, TUZHILIN A. The long tail of recommender systems and how to leverage it[C]//Proceedings of the 2008 ACM Conference on Recommender Systems, Lausanne, Oct 23-25, 2008. New York: ACM, 2008: 11-18. [25] ANELLI V W, NOIA T D, SCIASCIO E D, et al. Local popularity and time in top-N recommendation[C]//LNCS 11437: Proceedings of the 41st European Conference on IR Research: Advances in Information Retrieval, Cologne, Apr 14-18, 2019. Cham: Springer, 2019: 861-868. [26] YU D, SHEN Y, XU K, et al. Context-specific point-of-interest recommendation based on popularity-weighted random sampling and factorization machine[J]. ISPRS International Journal of Geo-Information, 2021, 10(4): 249-258. [27] ZHONG C, ZHU J, XI H. PS-LSTM: popularity analysis and social network for point-of-interest recommendation in previously unvisited locations[C]//Proceedings of the 2nd International Conference on Computing, Networks and Internet of Things, Beijing, May 20-22, 2021. New York: ACM, 2021: 28-36. [28] LAI C H, LEE S J, HUANG H L. A social recommendation method based on the integration of social relationship and product popularity[J]. International Journal of Human-Computer Studies, 2019, 12(2): 42-57. [29] LIU H, KOU H, YAN C, et al. Keywords-driven and popularity-aware paper recommendation based on undirected paper citation graph[J]. Complex, 2020, 15(3): 698-709. [30] ABDOLLAHPOURI H, BURKE R, MOBASHER B. Controlling popularity bias in learning-to-rank recommendation[C]//Proceedings of the 11th ACM Conference on Recommender Systems, Como, Aug 27-31, 2017. New York: ACM, 2017: 42-46. [31] ZHU Z, HE Y, ZHAO X, et al. Popularity-opportunity bias in collaborative filtering[C]//Proceedings of the 14th ACM International Conference on Web Search and Data Mining, Israel, Mar 8-12, 2021. New York: ACM, 2021: 85-93. [32] CHEN Z, XIAO R, LI C, et al. ESAM: discriminative domain adaptation with non-displayed items to improve long-tail performance[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, Jul 25-30, 2020. New York: ACM, 2020: 579-588. [33] BORATTO L, FENU G, MARRAS M. Connecting user and item perspectives in popularity debiasing for collaborative recommendation[J]. Information Processing and Management, 2021, 58(1): 102-113. [34] XV G, LIN C, LI H, et al. Neutralizing popularity bias in recommendation models[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, Madrid, Jul 11-15, 2022. New York: ACM, 2022: 2623-2628. [35] RHEE W, CHO S M, SUH B. Countering popularity bias by regularizing score differences[C]//Proceedings of the 16th ACM Conference on Recommender Systems, Seattle, Sep 1-23, 2022. New York: ACM, 2022: 145-155. [36] LIU Y, CAO Q, SHEN H, et al. Popularity debiasing from exposure to interaction in collaborative filtering[C]//Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval, Taipei, China, Jul 23-27, 2023. New York: ACM, 2023: 1801-1805. [37] ANTIKACIOGLU A, RAVI R. Post processing recommender systems for diversity[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Madrid, Jul 11-15, 2022. New York: ACM, 2017: 707-716. [38] ZEHLIKE M, BONCHI F, CASTILLO C, et al. FA*IR: a fair top-k ranking algorithm[C]//Proceedings of the 2017 ACM Conference on Information and Knowledge Management, Singapore, Nov 6-10, 2017. New York: ACM, 2017: 1569-1578. [39] ABDOLLAHPOURI H, BURKE R, MOBASHER B. Managing popularity bias in recommender systems with personalized re-ranking[C]//Proceedings of the 32nd International Florida Artificial Intelligence Research Society Conference, Sarasota, May 19-22, 2019. Menlo Park: AAAI, 2019: 413-418. [40] ABDOLLAHPOURI H, MANSOURY M, BURKE R, et al. User-centered evaluation of popularity bias in recommender systems[C]//Proceedings of the 29th ACM Conference on User Modeling, Adaptation and Personalization, Utrecht, Jun 21-25, 2021. New York: ACM, 2021: 119-129. [41] ZHANG F, SHEN Q. A model-agnostic popularity debias training framework for click-through rate prediction in recommender system[C]//Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval, Taipei, China, Jul 23-27, 2023. New York: ACM, 2023: 1760-1764. [42] YALCIN E, BILGE A. Investigating and counteracting popularity bias in group recommendations[J]. Information Processing and Management, 2021, 58(5): 102-109. [43] LIANG D, CHARLIN L, MCINERNEY J, et al. Modeling user exposure in recommendation[C]//Proceedings of the 25th International Conference on World Wide Web, Montreal, Apr 11-15, 2016. New York: ACM, 2016: 951-961. [44] WANG W, FENG F, HE X, et al. Deconfounded recommendation for alleviating bias amplification[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Singapore, Aug 14-18, 2021. New York: ACM, 2021: 1717-1725. [45] ZHENG Y, GAO C, LI X, et al. Disentangling user interest and conformity for recommendation with causal embedding[C]//Proceedings of the Web Conference 2021, Ljubljana, Apr 19-23, 2021. New York: ACM, 2021: 2980-2991. [46] ZHAO W, TANG D, CHEN X, et al. Disentangled causal embedding with contrastive learning for recommender system[C]//Proceedings of the ACM Web Conference 2023, Austin, Apr 30-May 4, 2023. New York: ACM, 2023: 406-410. [47] LIU Q, TIAN F, ZHENG Q, et al. Disentangling interest and conformity for eliminating popularity bias in session-based recommendation[J]. Knowledge and Information Systems, 2023, 65(6): 2645-2664. [48] GUPTA P, SHARMA A, MALHOTRA P, et al. CauSeR: causal session-based recommendations for handling popularity bias[C]//Proceedings of the 30th ACM International Conference on Information and Knowledge Management, Queensland, Nov 1-5, 2021. New York: ACM, 2021: 3048-3052. [49] HE M, LI C, HU X, et al. Mitigating popularity bias in recommendation via counterfactual inference[C]//Proceedings of the 27th International Conference Database Systems for Advanced Applications, Apr 11-14, 2022. Cham: Springer, 2022: 377-388. [50] SCHNABEL T, SWAMINATHAN A, SINGH A, et al. Recommendations as treatments: debiasing learning and evaluation[C]//Proceedings of the 33rd International Conference on Machine Learning, New York, Jun 19-24, 2016: 1670-1679. [51] BOTTOU L, PETERS J, QUINONERO C J, et al. Counterfactual reasoning and learning systems: the example of computational advertising[J]. The Journal of Machine Learning Research, 2013, 14(1): 3207-3260. [52] GRUSON A, CHANDAR P, CHARBUILLET C, et al. Offline evaluation to make decisions about playlist recommendation algorithms[C]//Proceedings of the 12th ACM International Conference on Web Search and Data Mining, Melbourne, Feb 11-15, 2019. New York: ACM, 2019: 420-428. [53] YANG L, CUI Y, XUAN Y, et al. Unbiased offline recommender evaluation for missing-not-at-random implicit feedback[C]//Proceedings of the 12th ACM Conference on Recommender Systems, Vancouver, Oct 2-7, 2018. New York: ACM, 2018: 279-287. [54] HUANG J, Oosterhuis H, DE R M, et al. Keeping dataset biases out of the simulation: a debiased simulator for reinforcement learning based recommender systems[C]//Proceedings of the 14th ACM Conference on Recommender Systems, Brazil, Sep 22-26, 2020. New York: ACM, 2020: 190-199. [55] SAITO Y, YAGINUMA S, NISHINO Y, et al. Unbiased recommender learning from missing-not-at-random implicit feedback[C]//Proceedings of the 13th International Conference on Web Search and Data Mining, Houston, Feb 3-7, 2020. New York: ACM, 2020: 501-509. [56] GAO X, JOI Q, MI Z, et al. Similarity measure based on punishing popular items for collaborative filtering[C]//Proceedings of the 2018 International Conference on Computer, Information and Telecommunication Systems, Alsace, Jul 11-13, 2018. Piscataway: IEEE, 2018: 1-5. [57] ZHANG X, SU K, QIAN F, et al. Collaborative filtering algorithm based on item popularity and dynamic changes of interest[C]//Modern Management Based on Big Data III - Proceedings of MMBD 2022, Seoul, Aug 15-18, 2022. Amsterdam: IOS Press, 2022: 132-140. [58] KRISHNAN A, SHARMA A, SANKAR A, et al. An adversarial approach to improve long-tail performance in neural collaborative filtering[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management, Torino, Oct 22-26, 2018. New York: ACM, 2018: 1491-1494. [59] 张帅, 高旻, 文俊浩, 等. 基于自监督学习的去流行度偏差推荐方法[J]. 电子学报, 2022, 50(10): 2361-2371. ZHANG S, GAO M, WEN J H, et al. Self-supervised learning for alleviating popularity bias in recommender systems[J]. Acta Electronica Sinica, 2022, 50(10): 2361-2371. [60] BONNER S, VASILE F. Causal embeddings for recommendation[C]//Proceedings of the 12th ACM Conference on Recommender Systems, Macao, China, Aug 10-16, 2019. New York: ACM, 2018: 104-112. [61] LIU Z, MEI S, XIONG C, et al. Text matching improves sequential recommendation by reducing popularity biases[C]//Proceedings of the 32nd ACM International Conference on Information and Knowledge Management, Birmingham, Oct 21-25, 2023. New York: ACM, 2023: 1534-1544. [62] CHEN J, DONG H, WANG X, et al. Bias and debias in recommender system: a survey and future directions[J]. ACM Transactions on Information Systems, 2023, 41(3): 57-67. [63] TAKACS G, TIKK D. Alternating least squares for personalized ranking[C]//Proceedings of the 6th ACM Conference on Recommender Systems, Dublin, Sep 9-13, 2012. New York: ACM, 2012: 83-90. [64] WASILEWSKI J, HURLEY N. Incorporating diversity in a learning to rank recommender system[C]//Proceedings of the 29th International Florida Artificial Intelligence Research Society Conference, Florida, May 16-18, 2016. Menlo Park: AAAI, 2016: 572-578. [65] RENDLE S, FREUDENTHALER C, GANTNER Z, et al. BPR: Bayesian personalized ranking from implicit feedback[C]//Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence, Arlington, Jun 18-21, 2009. Virginia: AUAI Press, 2009: 452-461. [66] LI Y, CHEN H, FU Z, et al. User-oriented fairness in recommendation[C]//Proceedings of the Web Conference 2021, Slovenia, Apr 19-23, 2021. New York: ACM, 2021: 624-632. [67] ABDOLLAHPOURI H. Popularity bias in ranking and recommendation[C]//Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society, Honolulu, Jan 27-28, 2019. New York: ACM, 2019: 529-530. [68] LIU Y, CAO X, YU Y. Are you influenced by others when rating? Improve rating prediction by conformity modeling[C]//Proceedings of the 10th ACM Conference on Recommender Systems, Boston, Sep 15-19, 2016. New York: ACM, 2016: 269-272. [69] BORGES R, STEFANIDIS K. On mitigating popularity bias in recommendations via variational autoencoders[C]//Proceedings of the 36th ACM/SIGAPP Symposium on Applied Computing, Mar 22-26, 2021. New York: ACM, 2021: 1383- 1389. [70] MENA M E, CANAMARES R, CASTELLS P, et al. Popularity bias in false-positive metrics for recommender systems evaluation[J]. ACM Transactions on Information Systems, 2021, 39(3): 36-43. [71] CHEN Z, WU J, LI C, et al. Co-training disentangled domain adaptation network for leveraging popularity bias in recommenders[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, Madrid, Jul 11-15, 2022. New York: ACM, 2022: 60-69. [72] WANG H, ZHANG F, XIE X, et al. DKN: deep knowledge-aware network for news recommendation[C]//Proceedings of the 2018 World Wide Web Conference, Lyon, Apr 23-27, 2018. New York: ACM, 2018: 1835-1844. [73] FENG S, CONG G, AN B, et al. POI2Vec: geographical latent representation for predicting future visitors[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence, San Francisco, Feb 4-9, 2017. Menlo Park: AAAI, 2017: 11-17. [74] GAO L, LI Y, LI R, et al. ST-RNet: a time-aware point-of-interest recommendation method based on neural network[C]//Proceedings of the 2019 International Joint Conference on Neural Networks, Budapest, Jul 14-19, 2019. Piscataway: IEEE, 2019: 1-8. [75] YEHUDA K. Collaborative filtering with temporal dynamics[C]//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Paris, Jun 28-Jul 1, 2009. New York: ACM, 2009: 447-456. [76] LESOTA O, MELCHIORRE A, REKABSAZ N, et al. Analyzing item popularity bias of music recommender systems: are different genders equally affected?[C]//Proceedings of the 15th ACM Conference on Recommender Systems, Amsterdam, Sep 27-Oct 1, 2021. New York: ACM, 2021: 601-606. [77] WANG X, ZHANG Y, YAMASAKI T. Earn more social attention: user popularity based tag recommendation system[C]//Proceedings of the Web Conference 2020, Taipei, China, Jul 20-23, 2020. New York: ACM, 2020: 212-216. [78] 高仰, 刘渊. 融合社交关系和知识图谱的推荐算法[J]. 计算机科学与探索, 2023, 17(1): 238-250. GAO Y, LIU Y. Recommendation algorithm combining social relationship and knowledge graph[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 238-250. [79] NAYAK A, GARG M, DUVVURU M R. News popularity beyond the click-through-rate for personalized recommendations[C]//Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval, Taipei, China, Jul 23-27, 2023. New York: ACM, 2023: 1396-1405. [80] YALCIN E, BILGE A. Popularity bias in personality perspective: an analysis of how personality traits expose individuals to the unfair recommendation[J]. Concurrency and Computation: Practice and Experience, 2023, 35(9): 194-208. [81] FERWERDA B, INGESSON E, BERNDL M, et al. I don’t care how popular you are! Investigating popularity bias in music recommendations from a user’s perspective[C]//Proceedings of the 2023 Conference on Human Information Interaction and Retrieval, San Francisco, Mar 10-13, 2023. New York: ACM, 2023: 357-361. |
[1] | 王世杰,周丽华,孔兵,周俊华. 基于LDA-DeepHawkes模型的信息级联预测[J]. 计算机科学与探索, 2020, 14(3): 410-425. |
[2] | 张艺璇,郭斌,欧阳逸,王柱,於志文. 移动APP演化模式分析与预测[J]. 计算机科学与探索, 2019, 13(12): 1981-1994. |
[3] | 谢纪东,武继刚. 间隔执行的异步副本放置策略[J]. 计算机科学与探索, 2018, 12(8): 1339-1349. |
[4] | 陈春燕,张钰,常标,吕俊龙. 基于ARMA模型的在线电视剧流行度预测[J]. 计算机科学与探索, 2016, 10(3): 425-432. |
[5] | 金晶. 基于内容流行度的网内缓存部署技术[J]. 计算机科学与探索, 2015, 9(10): 1229-1237. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||