[1] 王兆慧, 沈华伟, 曹婍, 等. 图分类研究综述[J]. 软件学报, 2022, 33(1): 171-192.
WANG Z H, SHEN H W, CAO Q, et al. Survey on graph classification[J]. Journal of Software, 2022, 33(1): 171-192.
[2] IDAKWO G, THANGAPANDIAN S, LUTTRELL J, et al. Structure-activity relationship-based chemical classification of highly imbalanced Tox21 datasets[J]. Journal of Cheminformatics, 2020, 12: 1-19.
[3] JOHNSON J M, KHOSHGOFTAAR T M. Survey on deep learning with class imbalance[J]. Journal of Big Data, 2019, 6(1): 1-54.
[4] ZHAO T, JIANG T W, SHAN N, et al. A synergistic approach for graph anomaly detection with pattern mining and feature learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 33(6): 2393-2405.
[5] DING K Z, WANG J L, LI J D, et al. Graph prototypical networks for few-shot learning on attributed networks[C]//Proceedings of the 29th ACM International Conference on Information & Knowledge Management. New York: ACM, 2020: 295-304.
[6] SHI M, TANG Y F, ZHU X Q, et al. Multi-class imbalanced graph convolutional network learning[C]//Proceedings of the 29th International Joint Conference on Artificial Intelligence. Palo Alto: AAAI, 2020: 2879-2885.
[7] ZHAO T X, ZHANG X, WANG S H. GraphSMOTE: imbalanced node classification on graphs with graph neural networks[C]//Proceedings of the 14th ACM International Conference on Web Search and Data Mining. New York: ACM, 2021: 833-841.
[8] PARK J, SONG J, YANG E. GraphENS: neighbor-aware ego network synthesis for class-imbalanced node classification[C]//Proceedings of the 10th International Conference on Learning Representations, 2022.
[9] LIU Z M, NGUYEN T K, FANG Y. Tail-GNN: tail-node graph neural networks[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2021: 1109-1119.
[10] YUN S, KIM K, YOON K, et al. LTE4G: long-tail experts for graph neural networks[C]//Proceedings of the 31st ACM International Conference on Information & Knowledge Management. New York: ACM, 2022: 2434-2443.
[11] KIPF T N, WELLING M. Variational graph auto-encoders[EB/OL]. [2024-05-13]. https://arxiv.org/abs/1611.07308.
[12] SIMONOVSKY M, KOMODAKIS N. GraphVAE: towards generation of small graphs using variational autoencoders[C]//Proceedings of the 27th International Conference on Artificial Neural Networks and Machine Learning. Cham: Springer, 2018: 412-422.
[13] JIN W, BARZILAY R, JAAKKOLA T. Junction tree variational autoencoder for molecular graph generation[C]//Proceedings of the 35th International Conference on Machine Learning, 2018: 2323-2332.
[14] MA C S, ZHANG X L. GF-VAE: a flow-based variational autoencoder for molecule generation[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management. New York: ACM, 2021: 1181-1190.
[15] WANG Y, ZHAO Y Y, SHAH N, et al. Imbalanced graph classification via graph-of-graph neural networks[C]//Proceedings of the 31st ACM International Conference on Information & Knowledge Management. New York: ACM, 2022: 2067-2076.
[16] ZHAO T X, LUO D S, ZHANG X, et al. TopoImb: toward topology-level imbalance in learning from graphs[C]//Proceedings of the 1st Learning on Graphs Conference, 2022: 37.
[17] TANG H, LIANG X. Where to find fascinating inter-graph super-vision: imbalanced graph classification with kernel information bottleneck[C]//Proceedings of the 31st ACM International Conference on Multimedia. New York: ACM, 2023: 3240-3249.
[18] CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16: 321-357.
[19] 王晓霞, 李雷孝, 林浩. SMOTE类算法研究综述[J]. 计算机科学与探索, 2024, 18(5): 1135-1159.
WANG X X, LI L X, LIN H. Survey of research on SMOTE type algorithms[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(5): 1135-1159.
[20] ZHANG H Y, CISSE M, DAUPHIN Y N, et al. Mixup: beyond empirical risk minimization[EB/OL]. [2024-05-13]. https://arxiv.org/abs/1710.09412.
[21] KINGMA D P, WELLING M. Auto-encoding variational bayes[C]//Proceedings of the 2nd International Conference on Learning Representations, 2014.
[22] 赵海霞, 石洪波, 武建, 等. 基于条件生成对抗网络的不平衡学习研究[J]. 控制与决策, 2021, 36(3): 619-628.
ZHAO H X, SHI H B, WU J, et al. Research on imbalanced learning based on conditional generative adversarial networks[J]. Control and Decision, 2021, 36(3): 619-628.
[23] XU K, HU W H, LESKOVEC J, et al. How powerful are graph neural networks?[C]//Proceedings of the 7th International Conference on Learning Representations, 2019.
[24] TOIVONEN H, SRINIVASAN A, KING R D, et al. Statistical evaluation of the predictive toxicology challenge 2000-2001[J]. Bioinformatics, 2003, 19(10): 1183-1193.
[25] DEBNATH A K, LOPEZ DE COMPADRE R L, DEBNATH G, et al. Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro compounds. correlation with molecular orbital energies and hydrophobicity[J]. Journal of Medicinal Chemistry, 1991, 34(2): 786-797.
[26] BORGWARDT K M, ONG C S, SCH?NAUER S, et al. Protein function prediction via graph kernels[J]. Bioinformatics, 2005, 21.
[27] SUTHERLAND J J, O'BRIEN L A, WEAVER D F. Spline-fitting with a genetic algorithm: a method for developing classification structure-activity relationships[J]. Journal of Chemical Information and Computer Sciences, 2003, 43(6): 1906-1915.
[28] FEY M, LENSSEN J E. Fast graph representation learning with PyTorch geometric[EB/OL]. [2024-05-13]. https://arxiv.org/abs/1903.02428.
[29] SUN F Y, HOFFMANN J, VERMA V, et al. InfoGraph: unsupervised and semi-supervised graph-level representation learning via mutual information maximization[EB/OL]. [2024- 05-13]. https://arxiv.org/abs/1908.01000.
[30] YOU Y N, CHEN T L, SUI Y D, et al. Graph contrastive learning with augmentations[C]//Advances in Neural Information Processing Systems 33, 2020: 5812-5823.
[31] VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks[EB/OL]. [2024-05-13]. https://arxiv.org/abs/1710.10903.
[32] HAMILTON W, YING Z, LESKOVEC J. Inductive representation learning on large graphs[C]//Advances in Neural Information Processing Systems 30, 2017: 1024-1034.
[33] BoRGWARDT K M, KRIEGEL H P. Shortest-path kernels on graphs[C]//Proceedings of the 5th IEEE International Conference on Data Mining. Piscataway: IEEE, 2005: 74-81. |