计算机科学与探索 ›› 2022, Vol. 16 ›› Issue (5): 1107-1116.DOI: 10.3778/j.issn.1673-9418.2012067
收稿日期:
2020-12-03
修回日期:
2021-01-27
出版日期:
2022-05-01
发布日期:
2022-05-19
通讯作者:
+ E-mail: jnuljw@163.com作者简介:
林佳伟(1996—),男,山东威海人,硕士研究生,主要研究方向为人工智能、模式识别。基金资助:
LIN Jiawei1,+(), WANG Shitong2
Received:
2020-12-03
Revised:
2021-01-27
Online:
2022-05-01
Published:
2022-05-19
About author:
LIN Jiawei, born in 1996, M.S. candidate. His research interests include artificial intelligence and pattern recognition.Supported by:
摘要:
最近迁移学习的新方法对抗域适应,将生成对抗网络(GAN)的思想添加到深度网络中,能够学习数据的可迁移表示形式进行域适应。虽然通过GAN的思想能够很好地提取出源域数据和目标域数据的共同特征,有效地进行不同域之间的知识迁移,但现有的对抗域适应算法不能有效地保留目标域数据的局部特征,而目标域数据的某些特征可能会对分类精度有显著的提升。为了避免原始数据的局部特征因对抗性学习遭到破坏,利用多任务神经网络来保留目标域数据的局部特征。提出了一个深度对抗重构分类网络的模型(DARCN)。DARCN受到自动编码器的启发,在对抗域适应的基础上,添加了自动编码器的解码部分,这样能够有效地从低维特征重建原始数据。该模型学习了以下任务的共享编码表示:带标签的源域数据的监督分类;不带标签的目标域数据的无监督重构;源域和目标域的不可区分性。最后,最小化标签分类器的分类损失和解码器的重构损失,同时最大化域判别器的分类损失,通过梯度下降法能够有效地解决此类优化问题。实验结果证明了目标域局部特征的保留对领域自适应任务是十分关键的。
中图分类号:
林佳伟, 王士同. 用于无监督域适应的深度对抗重构分类网络[J]. 计算机科学与探索, 2022, 16(5): 1107-1116.
LIN Jiawei, WANG Shitong. Deep Adversarial-Reconstruction-Classification Networks for Unsupervised Domain Adaptation[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1107-1116.
Methods | MNIST MNIST-M | SVHN MNIST | MNIST USPS | Average |
---|---|---|---|---|
CovNetsrc | 52.2 | 54.9 | 85.5 | 64.2 |
SDA | 42.6 | 55.2 | 43.1 | 46.7 |
SA | 56.7 | 59.3 | 85.9 | 67.3 |
DANN | 80.3 | 66.6 | 88.4 | 78.4 |
DARCN | 86.4 | 72.2 | 94.7 | 84.4 |
CovNettgt | 95.9 | 99.4 | 96.1 | 97.1 |
表1 数字数据集运行10次平均分类精度
Table 1 Average classification accuracy of 10 times on digital datasets %
Methods | MNIST MNIST-M | SVHN MNIST | MNIST USPS | Average |
---|---|---|---|---|
CovNetsrc | 52.2 | 54.9 | 85.5 | 64.2 |
SDA | 42.6 | 55.2 | 43.1 | 46.7 |
SA | 56.7 | 59.3 | 85.9 | 67.3 |
DANN | 80.3 | 66.6 | 88.4 | 78.4 |
DARCN | 86.4 | 72.2 | 94.7 | 84.4 |
CovNettgt | 95.9 | 99.4 | 96.1 | 97.1 |
Methods | WebcamAmazon | Dslr Amazon | Dslr Caltech | Dslr Webcam | WebcamCaltech | Average |
---|---|---|---|---|---|---|
CovNetsrc | 41.2 | 35.2 | 35.7 | 67.2 | 38.8 | 43.6 |
JGSA | 40.8 | 38.7 | 30.3 | 93.2 | 33.6 | 47.3 |
DDC | 72.1 | 42.5 | 43.7 | 71.0 | 69.4 | 59.7 |
DANN | 63.0 | 62.7 | 57.9 | 88.9 | 55.6 | 65.6 |
DARCN | 65.8 | 66.0 | 60.6 | 89.8 | 59.8 | 68.4 |
CovNettgt | 81.3 | 81.3 | 70.6 | 93.3 | 70.6 | 79.4 |
表2 Office-Caltech10数据集运行10次平均分类精度
Table 2 Average classification accuracy of 10 times on Office-Caltech10 dataset %
Methods | WebcamAmazon | Dslr Amazon | Dslr Caltech | Dslr Webcam | WebcamCaltech | Average |
---|---|---|---|---|---|---|
CovNetsrc | 41.2 | 35.2 | 35.7 | 67.2 | 38.8 | 43.6 |
JGSA | 40.8 | 38.7 | 30.3 | 93.2 | 33.6 | 47.3 |
DDC | 72.1 | 42.5 | 43.7 | 71.0 | 69.4 | 59.7 |
DANN | 63.0 | 62.7 | 57.9 | 88.9 | 55.6 | 65.6 |
DARCN | 65.8 | 66.0 | 60.6 | 89.8 | 59.8 | 68.4 |
CovNettgt | 81.3 | 81.3 | 70.6 | 93.3 | 70.6 | 79.4 |
网络 | 输入维度 | 参数量/104 | 内存占用/MB | 计算量/104 |
---|---|---|---|---|
网络1 | 28×28×3 | 34 | 1.30 | 3 152 |
网络2 | 32×32×3 | 66 | 2.52 | 5 680 |
网络3 | 224×224×3 | 21 636 | 825.35 | 414 076 |
表3 DARCN参数规模分析
Table 3 Analysis of parameter scale in DARCN
网络 | 输入维度 | 参数量/104 | 内存占用/MB | 计算量/104 |
---|---|---|---|---|
网络1 | 28×28×3 | 34 | 1.30 | 3 152 |
网络2 | 32×32×3 | 66 | 2.52 | 5 680 |
网络3 | 224×224×3 | 21 636 | 825.35 | 414 076 |
[1] | SIMONYAN K, ZISSERMAN A. Very deep convolutional net-works for large-scale image recognition[J]. arXiv:1409.1556, 2014. |
[2] | HE K M, ZHANG X Y, REN S Q, et al. Deep residual lear-ning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recogni-tion, Las Vegas, Jun 26-Jul 1, 2016. Washington: IEEE Com-puter Society, 2016: 770-778. |
[3] | LONG M S, WANG J M, DING G G, et al. Transfer joint matching for unsupervised domain adaptation[C]// Proceed-ings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, Jun 21-23, 2014. Washing-ton: IEEE Computer Society, 2014: 1410-1417. |
[4] | ALJUNDI R, EMONET R, MUSELET D, et al. Landmarks-based kernelized subspace alignment for unsupervised domain adaptation[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, Jun 7-12, 2015. Washington: IEEE Computer Society, 2015: 56-63. |
[5] | 毛发贵, 李碧雯, 沈备军. 基于实例迁移的跨项目软件缺陷预测[J]. 计算机科学与探索, 2016, 10(1): 43-55. |
MAO F G, LI B W, SHEN B J. Cross-project software de-fect prediction based on instance transfer[J]. Journal of Fron-tiers of Computer Science and Technology, 2016, 10(1): 43-55. | |
[6] |
LONG M S, WANG J M, DING G G, et al. Adaptation regula-rization: a general framework for transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(5): 1076-1089.
DOI URL |
[7] | WANG J D, FENG W J, CHEN Y Q, et al. Visual domain adaptation with manifold embedded distribution alignment[J]. arXiv:1807.07258, 2018. |
[8] | SUN B C, FENG J S, SAENKO K. Return of frustratingly easy domain adaptation[C]// Proceedings of the 30th AAAI Conference on Artificial Intelligence, Phoenix, Feb 12-17, 2016. Menlo Park: AAAI, 2016: 2058-2065. |
[9] | YAN K, KOU L, ZHANG D. Learning domain-invariant sub-space using domain features and independence maximization[J]. IEEE Transactions on Systems, Man, and Cybernetics, 2018, 48(1): 288-299. |
[10] | 许鹏, 邓赵红, 王骏, 等. 基于联合信息保持的异构领域自适应[J]. 计算机科学与探索, 2020, 14(7): 1183-1193. |
XU P, DENG Z H, WANG J, et al. Joint information pre-servation for heterogeneous domain adaptation[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(7): 1183-1193. | |
[11] | TZENG E, HOFFMAN J, SAENKO K, et al. Adversarial dis-criminative domain adaptation[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recogni-tion, Hawaii, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 7167-7176. |
[12] | MOTIIAN S, PICCIRILLI M, ADJEROH D A, et al. Uni-fied deep supervised domain adaptation and generalization[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 5715-5725. |
[13] | 刘建伟, 孙正康, 罗雄麟. 域自适应学习研究进展[J]. 自动化学报, 2014, 40(8): 1576-1600. |
LIU J W, SUN Z K, LUO X L. Review and research devel-opment on domain adaptation learning[J]. Acta Automatica Sinica, 2014, 40(8): 1576-1600. | |
[14] | PRATT L Y. Discriminability-based transfer between neural net-works[C]// Advances in Neural Information Processing Syst-ems 5, Denver, Nov 30-Dec 3, 1992. San Mateo: Morgan Kauf-mann, 1992: 204-211. |
[15] | BEN-DAVID S, BLITZER J, CRAMMER K, et al. Analysis of representations for domain adaptation[C]// Proceedings of the 20th Annual Conference on Neural Information Proce-ssing Systems, Vancouver, Dec 4-7, 2006. Cambridge: MIT Press, 2007: 137-144. |
[16] | BLITZER J, CRAMMER K, KULESZA A, et al. Learning bounds for domain adaptation[C]// Proceedings of the 21st Annual Conference on Neural Information Processing Sys-tems, Vancouver, Dec 3-6, 2007. Red Hook: Curran Asso-ciates, 2008: 129-136. |
[17] | YOSINSKI J, CLUNE J, BENGIO Y, et al. How transferable are features in deep neural networks?[C]// Proceedings of the Annual Conference on Neural Information Processing Systems 2014, Montreal, Dec 8-13, 2014: 3320-3328. |
[18] | FERNANDO B, HABRARD A, SEBBAN M, et al. Subspace alignment for domain adaptation[J]. arXiv:1409.5241, 2014. |
[19] | GLOROT X, BORDES A, BENGIO Y. Domain adaptation for large-scale sentiment classification: a deep learning approach[C]// Proceedings of the 28th International Conference on Machine Learning, Bellevue, Jun 28-Jul 2, 2011. Madison: Omnipress, 2011: 513-520. |
[20] | CHOPRA S, BALAKRISHNAN S, GOPALAN R. Dlid: deep learning for domain adaptation by interpolating bet-ween domains[C]// Proceedings of the 2013 Workshop on Chal-lenges in Representation Learning, Atlanta, 2013: 11690995. |
[21] | YOU K C, KOU Z, LONG M S. Co-tuning for transfer learning[C]// Proceedings of the Annual Conference on Neural Information Processing Systems 2020, Dec 6-12, 2020: 1-11. |
[22] | GANIN Y, USTINOVA E, AJAKAN H, et al. Domain-adversarial training of neural networks[J]. The Journal of Machine Learning Research, 2016, 17(1): 2096-2030. |
[23] | GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. arXiv:1406.2661, 2014. |
[24] |
KHAN M Z, JABEEN S, KHAN M U G, et al. A realistic image generation of face from text description using the fully trained generative adversarial networks[J]. IEEE Access, 2021, 9: 1250-1260.
DOI URL |
[25] |
ZHANG F, WANG C. MSGAN: generative adversarial net-works for image seasonal style transfer[J]. IEEE Access, 2020, 8: 104830-104840.
DOI URL |
[26] | 吴春梅, 胡军浩, 尹江华. 利用改进生成对抗网络进行人体姿态识别[J]. 计算机工程与应用, 2020, 56(8): 96-103. |
WU C M, HU J H, YIN J H. Using improved generative adversarial network for human pose estimation[J]. Computer Engineering and Applications, 2020, 56(8): 96-103. | |
[27] |
IENCO D, PENSA R G. Enhancing graph-based semisuper-vised learning via knowledge-aware data embedding[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(11): 5014-5020.
DOI URL |
[28] | DA K. A method for stochastic optimization[J]. arXiv:1412.6980, 2014. |
[29] | ZHANG J, LI W, OGUNBONA P. Joint geometrical and statistical alignment for visual domain adaptation[C]// Procee-dings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Hawaii, Jul 21-26, 2017. Washing-ton: IEEE Computer Society, 2017: 1859-1867. |
[30] | TZENG E, HOFFMAN J, ZHANG N, et al. Deep domain confusion: maximizing for domain invariance[J]. arXiv:1412.3474, 2014. |
[1] | 夏鸿斌, 肖奕飞, 刘渊. 融合自注意力机制的长文本生成对抗网络模型[J]. 计算机科学与探索, 2022, 16(7): 1603-1610. |
[2] | 申瑞彩, 翟俊海, 侯璎真. 选择性集成学习多判别器生成对抗网络[J]. 计算机科学与探索, 2022, 16(6): 1429-1438. |
[3] | 姜艺, 胥加洁, 柳絮, 朱俊武. 边缘指导图像修复算法研究[J]. 计算机科学与探索, 2022, 16(3): 669-682. |
[4] | 孙宇, 魏本征, 刘川, 张魁星, 丛金玉. 融减自动编码器[J]. 计算机科学与探索, 2021, 15(8): 1526-1533. |
[5] | 王曙燕, 金航, 孙家泽. GAN图像对抗样本生成方法[J]. 计算机科学与探索, 2021, 15(4): 702-711. |
[6] | 李猛, 李艳玲, 林民. 命名实体识别的迁移学习研究综述[J]. 计算机科学与探索, 2021, 15(2): 206-218. |
[7] | 费建伟,夏志华,余佩鹏,戴昀书. 人脸合成技术综述[J]. 计算机科学与探索, 2021, 15(11): 2025-2047. |
[8] | 王富平, 李文楼, 刘颖, 卢津, 公衍超. 结合边缘信息和门卷积的人脸修复算法[J]. 计算机科学与探索, 2021, 15(1): 150-162. |
[9] | 彭晏飞,高艺,杜婷婷,桑雨,訾玲玲. 生成对抗网络的单图像超分辨率重建方法[J]. 计算机科学与探索, 2020, 14(9): 1612-1620. |
[10] | 赵鹏飞,李艳玲,林民. 面向迁移学习的意图识别研究进展[J]. 计算机科学与探索, 2020, 14(8): 1261-1274. |
[11] | 李广丽,滑瑾,袁天,朱涛,邬任重,姬东鸿,张红斌. 基于用户偏好挖掘生成对抗网络的推荐系统[J]. 计算机科学与探索, 2020, 14(5): 803-814. |
[12] | 武随烁,杨金福,单义,许兵兵. 使用孪生注意力机制的生成对抗网络的研究[J]. 计算机科学与探索, 2020, 14(5): 833-840. |
[13] | 任豪,刘柏嵩,孙金杨. 面向知识迁移的跨领域推荐算法研究进展[J]. 计算机科学与探索, 2020, 14(11): 1813-1827. |
[14] | 李俊杰,王茜. 感知相似的图像分类对抗样本生成模型[J]. 计算机科学与探索, 2020, 14(11): 1930-1942. |
[15] | 梁俊杰,韦舰晶,蒋正锋. 生成对抗网络GAN综述[J]. 计算机科学与探索, 2020, 14(1): 1-17. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||