[1] |
SIMONYAN K, ZISSERMAN A. Very deep convolutional net-works for large-scale image recognition[J]. arXiv:1409.1556, 2014.
|
[2] |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual lear-ning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recogni-tion, Las Vegas, Jun 26-Jul 1, 2016. Washington: IEEE Com-puter Society, 2016: 770-778.
|
[3] |
LONG M S, WANG J M, DING G G, et al. Transfer joint matching for unsupervised domain adaptation[C]// Proceed-ings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, Jun 21-23, 2014. Washing-ton: IEEE Computer Society, 2014: 1410-1417.
|
[4] |
ALJUNDI R, EMONET R, MUSELET D, et al. Landmarks-based kernelized subspace alignment for unsupervised domain adaptation[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, Jun 7-12, 2015. Washington: IEEE Computer Society, 2015: 56-63.
|
[5] |
毛发贵, 李碧雯, 沈备军. 基于实例迁移的跨项目软件缺陷预测[J]. 计算机科学与探索, 2016, 10(1): 43-55.
|
|
MAO F G, LI B W, SHEN B J. Cross-project software de-fect prediction based on instance transfer[J]. Journal of Fron-tiers of Computer Science and Technology, 2016, 10(1): 43-55.
|
[6] |
LONG M S, WANG J M, DING G G, et al. Adaptation regula-rization: a general framework for transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(5): 1076-1089.
DOI
URL
|
[7] |
WANG J D, FENG W J, CHEN Y Q, et al. Visual domain adaptation with manifold embedded distribution alignment[J]. arXiv:1807.07258, 2018.
|
[8] |
SUN B C, FENG J S, SAENKO K. Return of frustratingly easy domain adaptation[C]// Proceedings of the 30th AAAI Conference on Artificial Intelligence, Phoenix, Feb 12-17, 2016. Menlo Park: AAAI, 2016: 2058-2065.
|
[9] |
YAN K, KOU L, ZHANG D. Learning domain-invariant sub-space using domain features and independence maximization[J]. IEEE Transactions on Systems, Man, and Cybernetics, 2018, 48(1): 288-299.
|
[10] |
许鹏, 邓赵红, 王骏, 等. 基于联合信息保持的异构领域自适应[J]. 计算机科学与探索, 2020, 14(7): 1183-1193.
|
|
XU P, DENG Z H, WANG J, et al. Joint information pre-servation for heterogeneous domain adaptation[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(7): 1183-1193.
|
[11] |
TZENG E, HOFFMAN J, SAENKO K, et al. Adversarial dis-criminative domain adaptation[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recogni-tion, Hawaii, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 7167-7176.
|
[12] |
MOTIIAN S, PICCIRILLI M, ADJEROH D A, et al. Uni-fied deep supervised domain adaptation and generalization[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 5715-5725.
|
[13] |
刘建伟, 孙正康, 罗雄麟. 域自适应学习研究进展[J]. 自动化学报, 2014, 40(8): 1576-1600.
|
|
LIU J W, SUN Z K, LUO X L. Review and research devel-opment on domain adaptation learning[J]. Acta Automatica Sinica, 2014, 40(8): 1576-1600.
|
[14] |
PRATT L Y. Discriminability-based transfer between neural net-works[C]// Advances in Neural Information Processing Syst-ems 5, Denver, Nov 30-Dec 3, 1992. San Mateo: Morgan Kauf-mann, 1992: 204-211.
|
[15] |
BEN-DAVID S, BLITZER J, CRAMMER K, et al. Analysis of representations for domain adaptation[C]// Proceedings of the 20th Annual Conference on Neural Information Proce-ssing Systems, Vancouver, Dec 4-7, 2006. Cambridge: MIT Press, 2007: 137-144.
|
[16] |
BLITZER J, CRAMMER K, KULESZA A, et al. Learning bounds for domain adaptation[C]// Proceedings of the 21st Annual Conference on Neural Information Processing Sys-tems, Vancouver, Dec 3-6, 2007. Red Hook: Curran Asso-ciates, 2008: 129-136.
|
[17] |
YOSINSKI J, CLUNE J, BENGIO Y, et al. How transferable are features in deep neural networks?[C]// Proceedings of the Annual Conference on Neural Information Processing Systems 2014, Montreal, Dec 8-13, 2014: 3320-3328.
|
[18] |
FERNANDO B, HABRARD A, SEBBAN M, et al. Subspace alignment for domain adaptation[J]. arXiv:1409.5241, 2014.
|
[19] |
GLOROT X, BORDES A, BENGIO Y. Domain adaptation for large-scale sentiment classification: a deep learning approach[C]// Proceedings of the 28th International Conference on Machine Learning, Bellevue, Jun 28-Jul 2, 2011. Madison: Omnipress, 2011: 513-520.
|
[20] |
CHOPRA S, BALAKRISHNAN S, GOPALAN R. Dlid: deep learning for domain adaptation by interpolating bet-ween domains[C]// Proceedings of the 2013 Workshop on Chal-lenges in Representation Learning, Atlanta, 2013: 11690995.
|
[21] |
YOU K C, KOU Z, LONG M S. Co-tuning for transfer learning[C]// Proceedings of the Annual Conference on Neural Information Processing Systems 2020, Dec 6-12, 2020: 1-11.
|
[22] |
GANIN Y, USTINOVA E, AJAKAN H, et al. Domain-adversarial training of neural networks[J]. The Journal of Machine Learning Research, 2016, 17(1): 2096-2030.
|
[23] |
GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. arXiv:1406.2661, 2014.
|
[24] |
KHAN M Z, JABEEN S, KHAN M U G, et al. A realistic image generation of face from text description using the fully trained generative adversarial networks[J]. IEEE Access, 2021, 9: 1250-1260.
DOI
URL
|
[25] |
ZHANG F, WANG C. MSGAN: generative adversarial net-works for image seasonal style transfer[J]. IEEE Access, 2020, 8: 104830-104840.
DOI
URL
|
[26] |
吴春梅, 胡军浩, 尹江华. 利用改进生成对抗网络进行人体姿态识别[J]. 计算机工程与应用, 2020, 56(8): 96-103.
|
|
WU C M, HU J H, YIN J H. Using improved generative adversarial network for human pose estimation[J]. Computer Engineering and Applications, 2020, 56(8): 96-103.
|
[27] |
IENCO D, PENSA R G. Enhancing graph-based semisuper-vised learning via knowledge-aware data embedding[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(11): 5014-5020.
DOI
URL
|
[28] |
DA K. A method for stochastic optimization[J]. arXiv:1412.6980, 2014.
|
[29] |
ZHANG J, LI W, OGUNBONA P. Joint geometrical and statistical alignment for visual domain adaptation[C]// Procee-dings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Hawaii, Jul 21-26, 2017. Washing-ton: IEEE Computer Society, 2017: 1859-1867.
|
[30] |
TZENG E, HOFFMAN J, ZHANG N, et al. Deep domain confusion: maximizing for domain invariance[J]. arXiv:1412.3474, 2014.
|