计算机科学与探索 ›› 2022, Vol. 16 ›› Issue (5): 1096-1106.DOI: 10.3778/j.issn.1673-9418.2012092
收稿日期:
2020-12-24
修回日期:
2021-03-12
出版日期:
2022-05-01
发布日期:
2022-05-19
通讯作者:
+ E-mail: zhaoyuhai@mail.neu.edu.cn作者简介:
张雁操(1997—),男,安徽阜阳人,硕士研究生,主要研究方向为机器学习、复杂网络等。基金资助:
ZHANG Yancao, ZHAO Yuhai(), SHI Lan
Received:
2020-12-24
Revised:
2021-03-12
Online:
2022-05-01
Published:
2022-05-19
About author:
ZHANG Yancao, born in 1997, M.S. candidate. His research interests include machine learning, complex network, etc.Supported by:
摘要:
链接预测是复杂网络中重要的研究方向之一。利用神经网络学习预定义的启发式特征近年来受到广泛关注。但是目前此类方法主要利用目标链接的局部子图预测链接,具有较强的局部性。针对这一问题,在SEAL算法的基础上,提出了利用多特征融合图注意力进行链接预测的算法ADNSL。该模型支持多类型的节点嵌入特征作为输入,包括局部特征生成和全局特征提取两部分。对于局部特征生成模块,利用图卷积层,将局部子图中的节点特征交互融合。为了弥补SEAL中的特征无效性和节点无偏性,提出了双向无参注意力。在全局特征提取模块中,利用迭代公式生成聚合图以降低struc2vec节点嵌入算法的复杂度,进而从全局角度挖掘可解释的结构特征,可以有效提升链接预测算法性能。实验表明,ADNSL算法可以合理地利用多类型节点嵌入特征,在八个不同领域的真实数据集上的表现明显优于多个基准算法。
中图分类号:
张雁操, 赵宇海, 史岚. 融合图注意力的多特征链接预测算法[J]. 计算机科学与探索, 2022, 16(5): 1096-1106.
ZHANG Yancao, ZHAO Yuhai, SHI Lan. Multi-feature Based Link Prediction Algorithm Fusing Graph Attention[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1096-1106.
数据集 | | | 平均度 |
---|---|---|---|
USAir | 332 | 2 126 | 12.81 |
NS | 1 589 | 2 742 | 3.45 |
PB | 1 222 | 16 714 | 27.36 |
Yeast | 2 375 | 11 693 | 9.85 |
C.ele | 297 | 2 148 | 14.46 |
Power | 4 941 | 6 594 | 2.67 |
Router | 5 022 | 6 258 | 2.49 |
E.coli | 1 805 | 14 660 | 12.55 |
表1 实验数据集
Table 1 Experiment datasets
数据集 | | | 平均度 |
---|---|---|---|
USAir | 332 | 2 126 | 12.81 |
NS | 1 589 | 2 742 | 3.45 |
PB | 1 222 | 16 714 | 27.36 |
Yeast | 2 375 | 11 693 | 9.85 |
C.ele | 297 | 2 148 | 14.46 |
Power | 4 941 | 6 594 | 2.67 |
Router | 5 022 | 6 258 | 2.49 |
E.coli | 1 805 | 14 660 | 12.55 |
Model | USAir | NS | PB | Yeast | C.ele | Power | Router | E.coli |
---|---|---|---|---|---|---|---|---|
CN | 87.94 | 77.14 | 86.73 | 82.58 | 72.24 | 53.37 | 52.91 | 86.57 |
JA | 84.80 | 77.12 | 83.44 | 82.50 | 69.76 | 53.37 | 52.92 | 81.72 |
PA | 87.57 | 65.83 | 89.54 | 81.59 | 73.79 | 46.80 | 55.05 | 90.81 |
AA | 88.60 | 77.13 | 87.07 | 82.61 | 73.36 | 53.37 | 52.93 | 87.64 |
PR | 90.59 | 82.29 | 92.24 | 89.33 | 84.95 | 57.35 | 54.41 | 92.95 |
SR | 81.05 | 81.59 | 81.81 | 88.52 | 76.05 | 56.17 | 54.37 | 73.73 |
LINE | 72.21 | 65.97 | 75.52 | 79.53 | 59.55 | 53.46 | 62.42 | 74.41 |
N2V | 84.63 | 80.28 | 79.27 | 90.17 | 75.56 | 55.40 | 62.46 | 84.71 |
WLNM | 91.44 | 87.60 | 90.91 | 92.23 | 75.70 | 64.11 | 86.12 | 92.79 |
SEAL | 92.86 | 86.76 | 93.79 | 93.88 | 83.87 | 62.47 | 85.96 | 94.28 |
ASEAL | 93.74 | 92.66 | 93.73 | 94.75 | 81.54 | 65.34 | 92.31 | 95.05 |
DNSL | 94.16 | 94.13 | 94.05 | 95.11 | 85.06 | 79.30 | 91.76 | 95.96 |
ADNSL | 94.87 | 96.13 | 94.07 | 96.41 | 84.31 | 79.83 | 95.80 | 96.58 |
表2 模型AUC对比(50%训练链接)
Table 2 AUC comparison of different approaches (50% training links) %
Model | USAir | NS | PB | Yeast | C.ele | Power | Router | E.coli |
---|---|---|---|---|---|---|---|---|
CN | 87.94 | 77.14 | 86.73 | 82.58 | 72.24 | 53.37 | 52.91 | 86.57 |
JA | 84.80 | 77.12 | 83.44 | 82.50 | 69.76 | 53.37 | 52.92 | 81.72 |
PA | 87.57 | 65.83 | 89.54 | 81.59 | 73.79 | 46.80 | 55.05 | 90.81 |
AA | 88.60 | 77.13 | 87.07 | 82.61 | 73.36 | 53.37 | 52.93 | 87.64 |
PR | 90.59 | 82.29 | 92.24 | 89.33 | 84.95 | 57.35 | 54.41 | 92.95 |
SR | 81.05 | 81.59 | 81.81 | 88.52 | 76.05 | 56.17 | 54.37 | 73.73 |
LINE | 72.21 | 65.97 | 75.52 | 79.53 | 59.55 | 53.46 | 62.42 | 74.41 |
N2V | 84.63 | 80.28 | 79.27 | 90.17 | 75.56 | 55.40 | 62.46 | 84.71 |
WLNM | 91.44 | 87.60 | 90.91 | 92.23 | 75.70 | 64.11 | 86.12 | 92.79 |
SEAL | 92.86 | 86.76 | 93.79 | 93.88 | 83.87 | 62.47 | 85.96 | 94.28 |
ASEAL | 93.74 | 92.66 | 93.73 | 94.75 | 81.54 | 65.34 | 92.31 | 95.05 |
DNSL | 94.16 | 94.13 | 94.05 | 95.11 | 85.06 | 79.30 | 91.76 | 95.96 |
ADNSL | 94.87 | 96.13 | 94.07 | 96.41 | 84.31 | 79.83 | 95.80 | 96.58 |
Model | USAir | NS | PB | Yeast | C.ele | Power | Router | E.coli |
---|---|---|---|---|---|---|---|---|
CN | 93.80 | 94.42 | 92.03 | 89.36 | 85.03 | 58.88 | 56.40 | 93.72 |
JA | 89.89 | 94.43 | 87.39 | 89.32 | 80.09 | 58.88 | 56.41 | 81.28 |
PA | 88.94 | 68.35 | 90.14 | 82.30 | 74.89 | 44.23 | 47.51 | 91.81 |
AA | 95.05 | 94.43 | 92.34 | 89.44 | 86.84 | 58.89 | 56.41 | 95.32 |
PR | 94.64 | 94.89 | 93.53 | 92.74 | 90.22 | 66.40 | 38.66 | 95.56 |
SR | 78.39 | 94.09 | 77.28 | 91.49 | 77.02 | 76.21 | 37.47 | 62.51 |
LINE | 81.17 | 80.64 | 76.97 | 87.35 | 69.28 | 55.61 | 67.13 | 82.40 |
N2V | 91.42 | 91.51 | 85.78 | 93.66 | 84.16 | 76.21 | 65.49 | 90.83 |
WLNM | 95.88 | 98.57 | 93.46 | 95.61 | 86.08 | 84.77 | 94.41 | 97.19 |
SEAL | 96.47 | 97.30 | 95.07 | 97.26 | 88.59 | 85.46 | 94.97 | 97.57 |
ASEAL | 96.17 | 98.97 | 95.52 | 97.58 | 88.33 | 86.11 | 95.19 | 97.83 |
DNSL | 97.12 | 98.07 | 95.21 | 98.32 | 87.79 | 92.29 | 98.41 | 98.60 |
ADNSL | 96.66 | 99.25 | 95.69 | 98.42 | 89.72 | 94.57 | 98.65 | 98.58 |
表3 模型AUC对比(90%训练链接)
Table 3 AUC comparison of different approaches (90% training links) %
Model | USAir | NS | PB | Yeast | C.ele | Power | Router | E.coli |
---|---|---|---|---|---|---|---|---|
CN | 93.80 | 94.42 | 92.03 | 89.36 | 85.03 | 58.88 | 56.40 | 93.72 |
JA | 89.89 | 94.43 | 87.39 | 89.32 | 80.09 | 58.88 | 56.41 | 81.28 |
PA | 88.94 | 68.35 | 90.14 | 82.30 | 74.89 | 44.23 | 47.51 | 91.81 |
AA | 95.05 | 94.43 | 92.34 | 89.44 | 86.84 | 58.89 | 56.41 | 95.32 |
PR | 94.64 | 94.89 | 93.53 | 92.74 | 90.22 | 66.40 | 38.66 | 95.56 |
SR | 78.39 | 94.09 | 77.28 | 91.49 | 77.02 | 76.21 | 37.47 | 62.51 |
LINE | 81.17 | 80.64 | 76.97 | 87.35 | 69.28 | 55.61 | 67.13 | 82.40 |
N2V | 91.42 | 91.51 | 85.78 | 93.66 | 84.16 | 76.21 | 65.49 | 90.83 |
WLNM | 95.88 | 98.57 | 93.46 | 95.61 | 86.08 | 84.77 | 94.41 | 97.19 |
SEAL | 96.47 | 97.30 | 95.07 | 97.26 | 88.59 | 85.46 | 94.97 | 97.57 |
ASEAL | 96.17 | 98.97 | 95.52 | 97.58 | 88.33 | 86.11 | 95.19 | 97.83 |
DNSL | 97.12 | 98.07 | 95.21 | 98.32 | 87.79 | 92.29 | 98.41 | 98.60 |
ADNSL | 96.66 | 99.25 | 95.69 | 98.42 | 89.72 | 94.57 | 98.65 | 98.58 |
[1] | 李兰茜. 基于复杂网络结构的链路预测技术研究[D]. 北京: 北京邮电大学, 2019. |
LI L X. Link prediction based on the structure of complex networks[D]. Beijing: Beijing University of Posts and Tele-communications, 2019. | |
[2] | MARTÍNEZ V, BERZAL F, CUBERO J. A survey of link prediction in complex networks[J]. ACM Computing Surveys, 2016, 49(4): 1-33. |
[3] | LIBEN-NOWELL D, KLEINBERG J. The link-prediction problem for social networks[J]. Journal of the American So-ciety for Information Science & Technology, 2007, 58(7): 1019-1031. |
[4] | JACCARD P. Etude comparative de la distribution florale dans une portion des Alpes et des Jura[J]. Bulletin del la Societe Vaudoise des Sciences Naturelles, 1901, 37(142): 547-579. |
[5] |
BARABÁSI A, ALBERT R. Emergence of scaling in random networks[J]. Science, 1999, 286(5439): 509-512.
DOI URL |
[6] |
ADAMIC L A, ADAR E. Friends and neighbors on the web[J]. Social Networks, 2003, 25(3): 211-230.
DOI URL |
[7] |
ZHOU T, LÜ L Y, ZHANG Y C. Predicting missing links via local information[J]. European Physical Journal B, 2009, 71(4): 623-630.
DOI URL |
[8] |
KATZ L. A new status index derived from sociometric ana-lysis[J]. Psychometrika, 1953, 18(1): 39-43.
DOI URL |
[9] | JEH G, WIDOM J. SimRank: a measure of structural-context similarity[C]// Proceedings of the 8th ACM SIGKDD Inter-national Conference on Knowledge Discovery and Data Mining, Edmonton, Jul 23-26, 2002. New York: ACM, 2002: 538-543. |
[10] |
LIU W P, LÜ L Y. Link prediction based on local random walk[J]. Europhysics Letters, 2010, 89(5): 58007.
DOI URL |
[11] | KOVÁCS I A, LUCK K, SPIROHN K, et al. Network-based prediction of protein interactions[J]. bioRxiv, 2018: 275529. |
[12] | PEROZZI B, AL-RFOU R, SKIENA S. DeepWalk: online learning of social representations[C]// Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, Aug 24-27, 2014. New York: ACM, 2014: 701-710. |
[13] | TANG J, QU M, WANG M Z, et al. LINE: large-scale infor-mation network embedding[C]// Proceedings of the 24th Inter-national Conference on World Wide Web, Florence, May 18-22, 2015. New York: ACM, 2015: 1067-1077. |
[14] | GROVER A, LESKOVEC J. node2vec:scalable feature lear-ning for networks[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, Aug 13-17, 2016. New York: ACM, 2016: 855-864. |
[15] | RIBEIRO L F R, SAVARESE P H P, FIGUEIREDO D R. struc2vec:learning node representations from structural iden-tity[C]// Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halfiax, Aug 13-17, 2017. New York: ACM, 2017: 385-394. |
[16] | WANG X, CUI P, WANG J, et al. Community preserving network embedding[C]// Proceedings of the 31st AAAI Con-ference on Artificial Intelligence, San Francisco, Feb 4-9, 2017. Palo Alto: AAAI, 2017: 203-209. |
[17] | LI Y, WANG Y, ZHANG T T, et al. Learning network em-bedding with community structural information[C]// Procee-dings of the 28th International Joint Conference on Artificial Intelligence, Macao, China, Aug 10-16, 2019. San Francisco: Morgan Kaufmann, 2019: 2937-2943. |
[18] | LAI Y A, HSU C C, CHEN W H, et al. PRUNE: preserving proximity and global ranking for network embedding[C]// Proceedings of the 31st Conference on Neural Information Processing Systems, Long Beach, Dec 4-9, 2017. Cambridge: MIT Press, 2017: 5257-5266. |
[19] | LICHTENWALTER R, LUSSIER J T, CHAWLA N V. New perspectives and methods in link prediction[C]// Proceedings of the 16th ACM SIGKDD International Conference on Know-ledge Discovery and Data Mining, Washington, Jul 25-28, 2010. New York: ACM, 2010: 243-252. |
[20] | CUKIERSKI W, HAMNER B, YANG B. Graph-based fea-tures for supervised link prediction[C]// Proceedings of the 2011 International Joint Conference on Neural Networks, San Jose, Jul 31-Aug 5, 2011. Piscataway: IEEE, 2011: 1237-1244. |
[21] | ZHANG M H, CHEN Y X. Weisfeiler-Lehman neural ma-chine for link prediction[C]// Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halfiax, Aug 13-17, 2017. New York: ACM, 2017: 575-583. |
[22] | ZHANG M H, CHEN Y X. Link prediction based on graph neural networks[C]// Proceedings of the 32nd Conference on Neural Information Processing Systems, Montreal, Dec 2-8, 2018. Cambridge: MIT Press, 2018: 5171-5181. |
[23] | ZHANG M H, CUI Z C, NEUMANN M, et al. An end-to-end deep learning architecture for graph classification[C]// Proceedings of the 32nd AAAI Conference on Artificial Intel-ligence, New Orleans, Feb 2-7, 2018. Palo Alto: AAAI, 2018: 4438-4445. |
[24] | VELICKOVIC P, CUCURULL G, CASANOVA A, et al. Graph attention networks[C]// Proceedings of the 6th Inter-national Conference on Learning Representations, Vancouver, Apr 30-May 3, 2018: 1-12. |
[25] |
XU G L, WANG X K, WANG Y, et al. Edge-nodes represe-ntation neural machine for link prediction[J]. Algorithms, 2019, 12(1): 12.
DOI URL |
[1] | 杨知桥, 张莹, 王新杰, 张东波, 王玉. 改进U型网络在视网膜病变检测中的应用研究[J]. 计算机科学与探索, 2022, 16(8): 1877-1884. |
[2] | 于慧琳, 陈炜, 王琪, 高建伟, 万怀宇. 使用子图推理实现知识图谱关系预测[J]. 计算机科学与探索, 2022, 16(8): 1800-1808. |
[3] | 夏鸿斌, 肖奕飞, 刘渊. 融合自注意力机制的长文本生成对抗网络模型[J]. 计算机科学与探索, 2022, 16(7): 1603-1610. |
[4] | 李运寰, 闻继伟, 彭力. 高帧率的轻量级孪生网络目标跟踪[J]. 计算机科学与探索, 2022, 16(6): 1405-1416. |
[5] | 陆仲达, 张春达, 张佳奇, 王子菲, 许军华. 双分支网络的苹果叶部病害识别[J]. 计算机科学与探索, 2022, 16(4): 917-926. |
[6] | 黄思远, 赵宇海, 梁燚铭. 融合图嵌入和注意力机制的代码搜索[J]. 计算机科学与探索, 2022, 16(4): 844-854. |
[7] | 赵鹏飞, 谢林柏, 彭力. 融合注意力机制的深层次小目标检测算法[J]. 计算机科学与探索, 2022, 16(4): 927-937. |
[8] | 王燕妮, 余丽仙. 注意力与多尺度有效融合的SSD目标检测算法[J]. 计算机科学与探索, 2022, 16(2): 438-447. |
[9] | 蒋光峰, 胡鹏程, 叶桦, 仰燕兰. 基于重构误差的同构图分类模型[J]. 计算机科学与探索, 2022, 16(1): 185-193. |
[10] | 袁立宁, 李欣, 王晓冬, 刘钊. 图嵌入模型综述[J]. 计算机科学与探索, 2022, 16(1): 59-87. |
[11] | 吴正洋, 汤庸, 刘海. 个性化学习推荐研究综述[J]. 计算机科学与探索, 2022, 16(1): 21-40. |
[12] | 蔡明昕, 孙晶, 王斌. 多角度语义轨迹相似度计算模型[J]. 计算机科学与探索, 2021, 15(9): 1632-1640. |
[13] | 陈俊芬, 张明, 赵佳成, 谢博鋆, 李艳. 结合降噪和自注意力的深度聚类算法[J]. 计算机科学与探索, 2021, 15(9): 1717-1727. |
[14] | 张晗, 贾甜远, 骆方, 张生, 邬霞. 面向网络文本的BERT心理特质预测研究[J]. 计算机科学与探索, 2021, 15(8): 1459-1468. |
[15] | 陈剑南, 杜军平, 薛哲, 寇菲菲. 基于多重注意力的金融事件大数据精准画像[J]. 计算机科学与探索, 2021, 15(7): 1237-1244. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||