[1] Ying R, He R, Chen K, et al. Graph convolutional neural networks for web-scale recommender systems[C]//Proceed-ings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2018: 974-983.
[2] Wang D, Liang Y, Xu D, et al. A content-based recommender system for computer science publication[J]. Knowledge-Based Systems, 2018, 157: 1-9.
[3] Reddy S R S, Nalluri S, Kuniseti S, et al. Content-based movie recommendation system using genre correlation[M]//Smart Intelligent Computing and Applications. Singapore: Springer, 2019: 391-397.
[4] Lian D, Ge Y, Zhang F, et al. Scalable content-aware collabora-tive filtering for location recommendation[J]. IEEE Transac-tions on Knowledge and Data Engineering, 2018, 30(6): 1122-1135.
[5] Nilashi M, Ibrahim O, Bagherifard K. A recommender system based on collaborative filtering using ontology and dimensio-nality reduction techniques[J]. Expert Systems with Appli-catios, 2018, 92: 507-520.
[6] Fu M, Qu H, Yi Z, et al. A novel deep learning-based coll-aborative filtering model for recommendation system[J]. IEEE Transactions on Cybernetics, 2018, 49(3): 1084-1096.
[7] Xue F, He X, Wang X, et al. Deep item-based collaborative filtering for top-n recommendation[J]. ACM Transactions on Information Systems, 2019, 37(3): 1-25.
[8] Valdiviezo-Díaz P, Bobadilla J. A hybrid approach of recom-mendation via extended matrix based on collaborative filtering with demographics information[C]//Proceedings of the 2018 International Conference on Technology Trends. Cham: Sprin-ger, 2018: 384-398.
[9] Wu D. Music personalized recommendation system based on hybrid filtration[C]//Proceedings of the 2019 International Conference on Intelligent Transportation Big Data and Smart City. Piscataway: IEEE, 2019: 430-433.
[10] Dhruv A, Kamath A, Powar A, et al. Artist recommendation system using hybrid method: a novel approach[M]//Emerging Research in Computing, Information, Communication and Applications. Singapore: Springer, 2019: 527-542.
[11] Bandyopadhyay S, Thakur S S. Product prediction and recom-mendation in e-commerce using collaborative filtering and artificial neural networks: a hybrid approach[M]//Intelligent Computing Paradigm: Recent Trends. Singapore: Springer, 2020: 59-67.
[12] Veeramachaneni S D, Pujari A K, Padmanabhan V, et al. A maximum margin matrix factorization based transfer learning approach for cross-domain recommendation[J]. Applied Soft Computing, 2019, 85: 105751.
[13] Fu W, Peng Z, Wang S, et al. Deeply fusing reviews and contents for cold start users in cross-domain recommendation systems[C]//Proceedings of the 2019 AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2019: 94-101.
[14] Fernández-Tobías I, Cantador I, Tomeo P, et al. Addressing the user cold start with cross-domain collaborative filtering: exploiting item metadata in matrix factorization[J]. User Mod-eling and User-Adapted Interaction, 2019, 29(2): 443-486.
[15] Khan M M, Ibrahim R, Ghani I. Cross domain recommender systems: a systematic literature review[J]. ACM Computing Surveys, 2017, 50(3): 1-34.
[16] Huang L, Wang C D, Chao H Y, et al. A score prediction approach for optional course recommendation via cross-user-domain collaborative filtering[J]. IEEE Access, 2019, 7: 19550-19563.
[17] Li B. Cross-domain collaborative filtering: a brief survey[C]//Proceedings of the IEEE 23rd International Conference on Tools with Artificial Intelligence. Washington: IEEE Computer Society, 2011: 1085-1086.
[18] Fernández-Tobías I, Cantador I, Kaminskas M, et al. Cross-domain recommender systems: a survey of the state of the art[C]//Spanish Conference on Information Retrieval, 2012: 24-36.
[19] Pan S J, Yang Q. A survey on transfer learning[J]. IEEE Trans-actions on Knowledge and Data Engineering, 2009, 22(10): 1345-1359.
[20] Tan C, Sun F, Kong T, et al. A survey on deep transfer lear-ning[C]//Proceedings of the 2018 International Conference on Artificial Neural Networks. Cham: Springer, 2018: 270-279.
[21] He M, Zhang J, Zhang S. ACTL: adaptive codebook transfer learning for cross-domain recommendation[J]. IEEE Access, 2019, 7: 19539-19549.
[22] Huang L, Zhao Z L, Wang C D, et al. LSCD: low-rank and sparse cross-domain recommendation[J]. Neurocomputing, 2019, 366: 86-96.
[23] Taneja A, Arora A. Cross domain recommendation using multidimensional tensor factorization[J]. Expert Systems with Applications, 2018, 92: 304-316.
[24] He M, Zhang J, Zhang J. MINDTL: multiple incomplete do-mains transfer learning for information recommendation[J]. China Communications, 2017, 14(11): 218-236.
[25] Zhuang F, Zheng J, Chen J, et al. Transfer collaborative filter-ing from multiple sources via consensus regularization[J].Neural Networks, 2018, 108: 287-295.
[26] Jiang S, Ding Z, Fu Y. Heterogeneous recommendation via deep low-rank sparse collective factorization[J]. IEEE Transac-tions on Pattern Analysis and Machine Intelligence, 2020, 42(5): 1097-1111.
[27] Wang J, Li S J, Yang S, et al. A new transfer learning model for cross-domain recommendation[J]. Chinese Journal of Com-puters, 2017, 40(10): 2367-2380.王俊, 李石君, 杨莎, 等. 一种新的用于跨领域推荐的迁移学习模型[J]. 计算机学报, 2017, 40(10): 2367-2380.
[28] Li L F, Liu Z, Wei G M, et al. Cross-domain recommenda-tion algorithm based on sharing knowledge pattern[J]. Acta Electronica Sinica, 2018, 46(8): 1947-1953.李林峰, 刘真, 魏港明, 等. 基于共享知识模型的跨领域推荐算法[J]. 电子学报, 2018, 46(8): 1947-1953.
[29] Zhang Q, Lu J, Wu D S, et al. A cross-domain recommender system with kernel-induced knowledge transfer for overlapp-ing entities[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(7): 1998-2012.
[30] Chang W, Wu Y, Liu H, et al. Cross-domain kernel induc-tion for transfer learning[C]//Proceedings of the 31st Con-ference on Artificial Intelligence. New York: ACM, 2017: 1763-1769.
[31] Zhang Q, Hao P, Lu J, et al. Cross-domain recommendation with semantic correlation in tagging systems[C]//Proceedings of the 2019 International Joint Conference on Neural Net-works. Piscataway: IEEE, 2019: 1-8.
[32] Wang X, Peng Z, Wang S, et al. Cross-domain recommenda-tion for cold-start users via neighborhood based feature map-ping[C]//Proceedings of the 2018 International Conference on Database Systems for Advanced Applications. Berlin, Heidelberg: Springer, 2018: 158-165.
[33] Wu Y W, Li B, Sun C H, et al. Research on domain adaptive recommendation methods based on transfer learning[J]. Com-puter Engineering and Applications, 2019, 55(13): 59-65.吴彦文, 李斌, 孙晨辉, 等. 基于迁移学习的领域自适应推荐方法研究[J]. 计算机工程与应用, 2019, 55(13): 59-65.
[34] Yu X, Jiang F, Du J, et al. A cross-domain collaborative filter-ing algorithm with expanding user and item features via the latent factor space of auxiliary domains[J]. Pattern Recogni-tion, 2019, 94: 96-109.
[35] Li C T, Hsu C T, Shan M K. A cross-domain recommenda-tion mechanism for cold-start users based on partial least squares regression[J]. ACM Transactions on Intelligent Sys-tems and Technology, 2018, 9(6): 1-26.
[36] Yu X, Lin J, Jiang F, et al. A cross-domain collaborative filter-ing algorithm based on feature construction and locally weighted linear regression[J]. Computational Intelligence and Neuroscience, 2018: 1-12.
[37] Ge M F, Liu Z, Wang N N, et al. Cross-domaining item recom-mendation algorithm including tag transfer[J]. Computer Science, 2019, 46(10): 1-6.葛梦凡, 刘真, 王娜娜, 等. 加入标签迁移的跨领域项目推荐算法[J]. 计算机科学, 2019, 46(10): 1-6.
[38] Ma G, Wang Y, Zheng X, et al. Leveraging transitive trust relations to improve cross-domain recommendation[J]. IEEE Access, 2018, 6: 38012-38025.
[39] Sahu A K, Dwivedi P. User profile as a bridge in cross-domain recommender systems for sparsity reduction[J]. Applied Intel-ligence, 2019, 49(7): 2461-2481.
[40] Wang Y, Feng C, Guo C, et al. Solving the sparsity problem in recommendations via cross-domain item embedding based on co-clustering[C]//Proceedings of the 12th ACM Interna-tional Conference on Web Search and Data Mining. New York: ACM, 2019: 717-725.
[41] Zhang Y, Ma X, Wan S, et al. CrossRec: cross-domain recom-mendations based on social big data and cognitive computing[J]. Mobile Networks and Applications, 2018, 23(6): 1610-1623.
[42] Shu K, Wang S, Tang J, et al. Crossfire: cross media joint friend and item recommendations[C]//Proceedings of the 11th ACM International Conference on Web Search and Data Mining. New York: ACM, 2018: 522-530.
[43] Zheng M, Bu J, Chen C, et al. Graph regularized sparse coding for image representation[J]. IEEE Transactions on Image Processing, 2010, 20(5): 1327-1336.
[44] Long M, Ding G, Wang J, et al. Transfer sparse coding for robust image representation[C]//Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recogni-tion. Washington: IEEE Computer Society, 2013: 407-414.
[45] Zhu F, Wang Y, Chen C, et al. A deep framework for cross-domain and cross-system recommendations[C]//Proceedings of the 27th International Joint Conference on Artificial Intel-ligence, Stockholm, Jul 13-19, 2018: 3711-3717.
[46] Gao C, Chen X, Feng F, et al. Cross-domain recommendation without sharing user-relevant data[C]]//Proceedings of the 28th International Conference on World Wide Web. New York: ACM, 2019: 491-502.
[47] Xu Y, Peng Z, Hu Y, et al. SARFM: a sentiment-aware review feature mapping approach for cross-domain recom-mendation[C]//Proceedings of the 2018 International Con-ference on Web Information Systems Engineering. Berlin, Heidelberg: Springer, 2018: 3-18.
[48] Kang S K, Hwang J, Lee D, et al. Semi-supervised learning for cross-domain recommendation to cold-start users[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management. New York: ACM, 2019: 1563-1572.
[49] He J, Liu R, Zhuang F, et al. A general cross-domain recom-mendation framework via Bayesian neural network[C]//Pro-ceedings of the 2018 IEEE International Conference on Data Mining. Piscataway: IEEE, 2018: 1001-1006.
[50] Elkahky A M, Song Y, He X. A multi-view deep learning approach for cross domain user modeling in recommendation systems[C]//Proceedings of the 24th International Conference on World Wide Web. New York: ACM, 2015: 278-288.
[51] Hu G, Zhang Y, Yang Q. Transfer meets hybrid: a synthetic approach for cross-domain collaborative filtering with text[C]//Proceedings of the 28th International Conference on World Wide Web. New York: ACM, 2019: 2822-2829.
[52] Perera D, Zimmermann R. LSTM networks for online cross-network recommendations[C]//Proceedings of the 27th Inter-national Joint Conference on Artificial Intelligence, Stock-holm, Jul 13-19, 2018: 3825-3833.
[53] Zhao C, Li C, Fu C. Cross-domain recommendation via pre-ference propagation GraphNet[C]//Proceedings of the 28th ACM International Conference on Information and Know-ledge Management. New York: ACM, 2019: 2165-2168.
[54] Hu G, Zhang Y, Yang Q. CoNet: collaborative cross networks for cross-domain recommendation[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management. New York: ACM, 2018: 667-676.
[55] He X, Liao L, Zhang H, et al. Neural collaborative filtering[C]//Proceedings of the 26th International Conference on World Wide Web. New York: ACM, 2017: 173-182.
[56] Misra I, Shrivastava A, Gupta A, et al. Cross-stitch networks for multi-task learning[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 3994-4003.
[57] Liu J, Zhao P, Liu Y, et al. Exploiting aesthetic preference in deep cross networks for cross-domain recommendation[C]//Proceedings of the 29th International Conference on World Wide Web. New York: ACM, 2020: 1-9.
[58] Jin X, Wu L, Li X, et al. ILGNet: inception modules with connected local and global features for efficient image aes-thetic quality classification using domain adaptation[J]. IET Computer Vision, 2018, 13(2): 206-212.
[59] Wang C, Niepert M, Li H. RecSys-DAN: discriminative adversarial networks for cross-domain recommender systems[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(8): 2731-2740.
[60] Yuan F, Yao L, Benatallah B. DARec: deep domain adaptation for cross-domain recommendation via transferring rating pat-terns[C]//Proceedings of the 28th International Joint Con-ference on Artificial Intelligence, Macao, China, Aug 10-16, 2019: 4227-4233.
[61] Jo S Y, Jang S H, Cho H E, et al. Scenery-based fashion recommendation with cross-domain generative adversarial networks[C]//Proceedings of the 2019 IEEE International Con-ference on Big Data and Smart Computing. Piscataway: IEEE, 2019: 1-4. |