计算机科学与探索 ›› 2014, Vol. 8 ›› Issue (4): 506-512.DOI: 10.3778/j.issn.1673-9418.1312014

• 人工智能与模式识别 • 上一篇    

压缩因子综合信息粒子群算法

张成兴+   

  1. 兰州商学院 甘肃经济发展数量分析研究中心,兰州 730020
  • 出版日期:2014-04-01 发布日期:2014-04-03

Comprehensive Informed Particle Swarm Optimizer Based on Constrict Factor

ZHANG Chengxing+   

  1. Quantitative Analysis Research Center of Economics Development in Gansu Province, Lanzhou University of Finance and Economics, Lanzhou 730020, China
  • Online:2014-04-01 Published:2014-04-03

摘要: 在群体智能算法中个体种群的多样性在进化后期逐渐消失,个体趋同性增加,因此粒子群算法的主要缺点是容易陷入局部最优值。提出了一种新的改进粒子群算法,该算法结合了压缩因子和综合信息策略,其中压缩因子可以平衡粒子群算法中的局部和全局搜索,综合信息可以较好地加强种群的多样性。改进后的粒子群算法与基本粒子群算法、自适应粒子群算法和压缩因子粒子群算法在7个测试函数上分别进行了精度对比测试、成功概率测试和收敛速度测试,结果表明新算法获得了较高的搜索精度和较快的收敛速度。

关键词: 综合信息策略, 压缩因子, 粒子群算法

Abstract: The diversity of swarm will be impaired in late period of evolution for a swarm intelligent algorithm and the convergence of each individual element is enhanced, so the major disadvantage of particle swarm optimizer is vulnerable to be trapped in the local optima. This paper proposes a new variant particle swarm optimizer which combines constrict factor and comprehensive informed strategy. The constrict factor can balance the global and local models, and comprehensive informed strategy can efficiently enhance the diversity of all particles. By comparing the standard particle swarm optimizer, adaptive particle swarm optimizer and particle swarm optimizer based on constrict factor on 7 test functions with accuracy level, success rate and convergence velocity, the results show that the new algorithm can obtain a higher accurate level and faster convergence velocity.

Key words: comprehensive informed, constrict factor, particle swarm optimizer