计算机科学与探索 ›› 2020, Vol. 14 ›› Issue (4): 680-687.DOI: 10.3778/j.issn.1673-9418.1905082
汪鑫耘,李丹
WANG Xinyun, LI Dan
摘要:
针对现有卷积神经网络图像超分辨率算法容易出现过拟合、损失函数的收敛性不足等问题,结合超分辨率算法和生成式对抗网络(GAN)理论,设计一种基于生成式对抗网络的超分辨率算法PESRGAN用于恢复四倍下采样的图像。首先使用残差密集块(RDB)作为基本结构单元,有效避免了过拟合问题;其次使用双层特征损失并使用渗透指数(PI)作为损失的权值,更好地去学习低分辨率到高分辨率图像之间的映射关系;同时使用VGG19作为判别网络高分辨率图像进行分类;最后使用经典数据集,将PESRGAN算法与双三次插值(Bicubic)、SRGAN、ESRGAN算法在客观参数和主观视觉效果进行对比。实验结果表明:在经典数据集上,PESRGAN的平均峰值信噪比(PSNR)达到25.4 dB、平均结构相似性(SSIM)达到0.73,平均渗透指数(PI)达到1.15,在客观参数和主观评价上均优于其他算法,证明了PESRGAN有良好的超分辨率重建的效果。