计算机科学与探索 ›› 2020, Vol. 14 ›› Issue (9): 1590-1601.DOI: 10.3778/j.issn.1673-9418.1908002

• 图形图像 • 上一篇    下一篇

基于CNN多层面二阶特征融合的肺结节分类

李维,赵晓乐,段彦隆,刘利军,黄青松   

  1. 1. 昆明理工大学 信息工程与自动化学院,昆明 650500
    2. 云南省计算机技术应用重点实验室,昆明 650500
  • 出版日期:2020-09-01 发布日期:2020-09-07

Classification of Pulmonary Nodules Based on CNN Multi-level Second-order Feature Fusion

LI Wei, ZHAO Xiaole, DUAN Yanlong, LIU Lijun, HUANG Qingsong   

  1. 1. Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China
    2. Yunnan Key Laboratory of Computer Technology Applications, Kunming 650500, China
  • Online:2020-09-01 Published:2020-09-07

摘要:

肺部CT图像具有切片数量巨大,肺结节在图像中的位置和形状各异,且肺结节周围环境复杂等特点,传统肺结节检测方法通常只利用肺结节形状、灰度等特征,肺结节特征信息利用率低,且没有完全考虑肺结节细粒度特征信息。为此提出了基于卷积神经网络多层面二阶特征融合模型(CMSFF)。采用卷积神经网络对同一结节的多层切面分别进行特征提取,通过两个阶段的特征融合,充分考虑肺结节的细粒度特征,实现对肺结节特征信息的准确提取。实验表明,该方法提取到的肺结节特征信息在肺结节恶性程度分类中AUC值达到0.924,能有效提高肺结节恶性程度分类准确率。

关键词: CT图像, 肺结节, 特征提取, 卷积神经网络(CNN)

Abstract:

The CT image of the lung has a large number of slices. The positions and shapes of the lung nodules in the CT image are different, and the environment around the lung nodules is complex. Traditional methods usually detect pulmonary nodules only by the shape, gray scale and other characteristics, with low utilization rate of pul-monary nodules characteristic information, and do not fully consider the fine-grained characteristics of lung nodules. This paper designs a multi-level second-order feature fusion model based on convolutional neural network (CMSFF). The convolution neural network is used to extract the features of the multi-level sections of the same nodule. Through the two-stage feature fusion, the fine-grained features of the pulmonary nodules are fully considered to achieve accurate extraction of the lung nodule feature information. Experimental results show that this paper reaches an AUC value of 0.924 in the classification of malignant degree of pulmonary nodules through the characteristic information extracted by this method which can effectively improve the classification accuracy of malignant degree of pulmonary nodules.

Key words: CT image, pulmonary nodule, feature extraction, convolutional neural network (CNN)