[1] Su H, Zhou J, Zhang Z H. Survey of super-resolution image reconstruction methods[J]. Acta Automatica Sinica, 2013, 39(8): 1202-1213.苏衡, 周杰, 张志浩. 超分辨率图像重建方法综述[J]. 自动化学报, 2013, 39(8): 1202-1213.
[2] Glasner D, Bagon S, Irani M. Super-resolution from a single image[C]//Proceedings of the 12th IEEE International Con-ference on Computer Vision, Kyoto, Sep 27-Oct 4, 2009. Was-hington: IEEE Computer Society, 2009: 349-356.
[3] Park S C, Park M K, Kang M G. Super-resolution image rec-onstruction: a technical overview[J]. IEEE Signal Proce-ssing Magazine, 2003, 20(3): 21-36.
[4] Wang H P, Zhou L L, Zhang J. Region-based bicubic image interpolation algorithm[J]. Computer Engineering, 2010, 36(19): 216-218.王会鹏, 周利莉, 张杰. 一种基于区域的双三次图像插值算法[J]. 计算机工程 , 2010, 36(19): 216-218.
[5] Yang J C, Wright J, Huang T S, et al. Image super-resolution via sparse representation[J]. IEEE Transactions on Image Processing, 2010, 19(11): 2861-2873.
[6] Timofte R, De Smet V, Van Gool L. A+: adjusted anchored neighborhood regression for fast super-resolution[C]//LNCS 9006: Proceedings of the 12th Asian Conference on Computer Vision, Singapore, Nov 1-5, 2014. Berlin, Heidelberg: Springer, 2015: 111-126.
[7] Huang J B, Singh A, Ahuja N. Single image super-resolution from transformed self-exemplars[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recog-nition, Boston, Jun 7-12, 2015. Washington: IEEE Computer Society, 2015: 5197-5206.
[8] Hayat K. Multimedia super-resolution via deep learning: a survey[J]. Digital Signal Processing, 2018, 81(10): 198-217.
[9] Tan Z, Xiang L B, Lü Q B, et al. A sequence images super-resolution enhancement approach based on frequency-domain[J]. Acta Optica Sinica, 2017, 37(7): 83-88.谭政, 相里斌, 吕群波, 等. 一种基于频域的序列图像超分辨率增强方法[J]. 光学学报, 2017, 37(7): 83-88.
[10] Zhu F Z, Liu Y, Huang X, et al. Remote sensing image super-resolution based on improved sparse representation[J]. Optics and Precision Engineering, 2019, 27(3): 718-725. 朱福珍, 刘越, 黄鑫, 等. 改进的稀疏表示遥感图像超分辨重建[J]. 光学精密工程, 2019, 27(3): 718-725.
[11] Zeiler M D, Fergus R. Visualizing and understanding convolutional networks[C]//LNCS 8689: Proceedings of the 13th European Conference on Computer Visio, Zurich, Sep 6-12, 2014. Berlin, Heidelberg: Springer, 2014: 818-833.
[12] Deng J, Dong W, Socher R, et al. ImageNet: a large-scale hierarchical image database[C]//Proceedings of the 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Miami, Jun 20-25, 2009. Washington: IEEE Computer Society, 2009: 248-255.
[13] Dong C, Loy C C, He K M, et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 38(2):295-307.
[14] Graves A, Mohamed A, Hinton G E. Speech recognition with deep recurrent neural networks[C]//Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, May 26-31, 2013. Pis-cataway: IEEE, 2013: 6645-6649.
[15] He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 770-778.
[16] Kim J, Lee J K, Lee K M. Deeply-recursive convolutional network for image super-resolution[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 1637-1645.
[17] Kim J, Lee J K, Lee K M. Accurate image super-resolution using very deep convolutional networks[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 1646-1654.
[18] Mao X J, Shen C H, Yang Y B. Image restoration using convolutional auto-encoders with symmetric skip connec-tions[J]. arXiv:1606.08921, 2016.
[19] Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial net-works[J]. arXiv:1511.06434, 2015.
[20] Ledig C, Theis L, Huszar F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017.Washington: IEEE Computer Society, 2017: 105-114.
[21] Wang X T, Yu K, Wu S X, et al. ESRGAN: enhanced super-resolution generative adversarial networks[C]//LNCS 11133: Proceedings of the 2018 Workshops on Computer Vision, Munich, Sep 8-14, 2018. Berlin, Heidelberg: Springer, 2018: 63-79.
[22] Yang J, Li W J, Wang R G, et al. Generative adversarial network for image super-resolution combining perceptual loss[J]. Journal of Image and Graphics, 2019, 24(8): 1270-1282.杨娟, 李文静, 汪荣贵, 等. 融合感知损失的生成式对抗超分辨率算法[J]. 中国图象图形学报, 2019, 24(8): 1270-1282.
[23] Zhang Y L, Li K P, Li K, et al. Image super-resolution using very deep residual channel attention networks[C]//LNCS 11211: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Berlin, Hei-delberg: Springer, 2018: 294-301.
[24] Li Y F, Fu R D, Jin W, et al. Multi-channel convolution image super-resolution method[J]. Chinese Journal of Image and Graphics, 2018, 22(12): 1690-1700.李云飞, 符冉迪, 金炜, 等. 多通道卷积的图像超分辨率方法[J]. 中国图象图形学报, 2018, 22(12): 1690-1700.
[25] Shao B T, Tang X Y, Jin L, et al. Single frame infrared image super-resolution algorithm based on generative adver-sarial nets[J]. Journal of Infrared and Millimeter Waves, 2018, 37(4): 427-432.邵保泰, 汤心溢, 金璐, 等. 基于生成对抗网络的单帧红外图像超分辨算法[J]. 红外与毫米波学报, 2018, 37(4): 427-432.
[26] Xu J, Liu H, Guo Q, et al. Super-resolution reconstruction of CT images using neural network combined with decon-volution[J]. Journal of Computer-Aided Design & Computer Graphics, 2018, 30(11): 2084-2092.徐军, 刘慧, 郭强, 等. 结合反卷积的CT图像超分辨重建网络[J]. 计算机辅助设计与图形学学报, 2018, 30(11): 2084-2092.
[27] Nair V, Hinton G E. Rectified linear units improve restr-icted Boltzmann machines[C]//Proceedings of the 27th Inter-national Conference on Machine Learning, Haifa, Jun 21-24, 2010. Madison: Omni Press, 2010: 807-814.
[28] Tong T, Li G, Liu X J, et al. Image super-resolution using dense skip connections[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 4809-4817.
[29] Szegedy C, Liu W, Jia Y Q, et al. Going deeper with convolutions[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, Jun 7-12, 2015. Washington: IEEE Computer Society, 2015: 1-9.
[30] Bengio Y, Simard P Y, Frasconi P. Learning long-term dependencies with gradient descent is difficult[J]. IEEE Transactions on Neural Networks, 1994, 5(2): 157-166.
[31] Aharon M, Elad M, Bruckstein A. K-SVD: an algorithm for designing overcomplete dictionaries for sparse represen-tation[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4311-4322.
[32] Shlens J. A tutorial on principal component analysis[J]. arXiv:1404.1100, 2014.
[33] Ahmed N, Natarajan T, Rao K R. Discrete cosine transform[J]. IEEE Transactions on Computers, 1974, 23(1): 90-93.
[34] Turaga D S, Chen Y W, Caviedes J E. No reference PSNR estimation for compressed pictures[C]//Proceedings of the 2002 International Conference on Image Processing, Roc-hester, Sep 22-25, 2002. Piscataway: IEEE, 2002: 61-64.
[35] Wang Z, Bovik A C, Sheikh H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.
[36] Zhao H, Gallo O, Frosio I, et al. Loss functions for image restoration with neural networks[J]. IEEE Transactions on Computational Imaging, 2017, 3(1): 47-57.
[37] Kingma D P, Ba J. Adam: a method for stochastic optimization[J]. arXiv:1412.6980, 2014.
[38] Martin D R, Fowlkes C C, Tal D, et al. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C]//Proceedings of the 8th International Conference on Computer Vision, Vancouver, Jul 7-14, 2001. Washington: IEEE Computer Society, 2001: 416-425.
[39] Marco B, Aline R, Christine G, et al. Low-complexity single-image super-resolution based on nonnegative neighbor embedding[C]//Proceedings of the 23rd British Machine Vision Conference, Surrey, Sep 3-7, 2012. Durham: BMVA Press, 2012: 1-10.
[40] Zeyde R, Elad M, Protter M. On single image scale-up using sparse-representations[C]//LNCS 6920: Proceedings of the 7th International Conference on Curves and Surfaces, Avignon, Jun 24-30, 2010. Berlin, Heidelberg: Springer, 2010: 711-730. |