[1] ZHANG D, WANG F, SI L, et al. Composite Hashing with multiple information sources[C]//Proceedings of the 2011 International ACM SIGIR Conference on Research and Development in Information Retrieval, Beijing, Jul 25-29, 2011. New Work: ACM, 2011: 225-234.
[2] KANG Y, KIM S, CHOI S. Deep learning to Hash with multiple representations[C]//Proceedings of the 2012 IEEE 12th International Conference on Data Mining, Brussels, Dec 10-13, 2012. Washington: IEEE Computer Society, 2012: 930-935.
[3] LIN Z J, DING G G, HU M Q, et al. Semantics-preserving Hashing for cross-view retrieval[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, Jun 7-12, 2015. Piscataway: IEEE, 2015: 3864-3872.
[4] JIANG Q Y, LI W J. Deep cross-modal Hashing[C]//Pro-ceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Pis-cataway: IEEE, 2017: 3270-3278.
[5] DING G G, GUO Y C, ZHOU J L. Collective matrix factor-ization Hashing for multimodal data[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, Jun 23-28, 2014. Piscataway: IEEE, 2014: 2083-2090.
[6] ZHANG D Q, LI W J. Large-scale supervised multimodal Hashing with semantic correlation maximization[C]//Pro-ceedings of the 28th AAAI Conference on Artificial Inte-lligence, Québec City, Jul 27 -31, 2014. Menlo Park: AAAI, 2014: 2177-2183.
[7] KUMAR S, UDUPA R. Learning Hash functions for cross-view similarity search[C]//Proceedings of the 22nd International Joint Conference on Artificial Intelligence, Barcelona, Jul 16-22, 2011. Menlo Park: AAAI, 2011: 1360-1365.
[8] XIA S, WANG G, CHEN Z, et al. Complete random forest based class noise filtering learning for improving the genera-lizability of classifiers[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 31(11): 2063-2078.
[9] XIA S, LIU Y, DING X, et al. Granular ball computing classifiers for efficient, scalable and robust learning[J]. Information Sciences, 2019, 483: 136-152.
[10] ARBELAEZ P, MAIRE M, FOWLKES C, et al. Contour detection and hierarchical image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 33(5): 898-916.
[11] LIU C X, CHEN L C, SCHROFF F, et al. Auto-deeplab: hierarchical neural architecture search for semantic image segmentation[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 82-92.
[12] DENG J K, GUO J, XUE N N, et al. ArcFace: additive angular margin loss for deep face recognition[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 4690-4699.
[13] ZHU J, CHEN Z, ZHAO L, et al. Quadruplet-based deep Hashing for image retrieval[J]. Neurocomputing, 2019, 366: 161-169.
[14] ZHU J, WU S, ZHU H, et al. Multi-center convolutional descriptor aggregation for image retrieval[J]. International Journal of Machine Learning and Cybernetics, 2019, 10(7): 1863-1873.
[15] LIU H, JI R R, WU Y J, et al. Cross-modality binary code learning via fusion similarity Hashing[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Piscataway: IEEE, 2017: 6345-6353.
[16] CAO Y, LONG M S, WANG J M, et al. Correlation autoencoder Hashing for supervised cross-modal search[C]//Proceedings of the 2016 ACM International Conference on Multimedia Retrieval, New York, Jun 6-9, 2016. New Work: ACM, 2016: 197-204.
[17] DENG C, CHEN Z, LIU X, et al. Triplet-based deep Hashing network for cross-modal retrieval[J]. IEEE Transactions on Image Processing, 2018, 27(8): 3893-3903.
[18] JIANG Q Y, LI W J. Discrete latent factor model for cross-modal Hashing[J]. IEEE Transactions on Image Processing, 2019, 28(7): 3490-3501.
[19] YANG Z C, HE X D, GAO J F, et al. Stacked attention networks for image question answering[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Piscataway: IEEE, 2016: 21-29.
[20] SHARMA S, KIROS R, SALAKHUTDINOV R. Action rec-ognition using visual attention[J]. arXiv:1511.04119, 2015.
[21] NOH H, ARAUJO A, SIM J, et al. Large-scale image retrieval with attentive deep local features[C]//Proceedings of the 2017 International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 3476-3485.
[22] YANG E K, DENG C, LIU W, et al. Pairwise relationship guided deep Hashing for cross-modal retrieval[C]//Procee-dings of the 31st AAAI Conference on Artificial Intelligence, San Francisco, Feb 4-9, 2017. Menlo Park: AAAI, 2017:1618-1625.
[23] ZHEN L L, HU P, WANG X, et al. Deep supervised cross-modal retrieval[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 10394-10403.
[24] TOLIAS G, SICRE R, JéGOU H. Particular object retrieval with integral max-pooling of CNN activations[J]. arXiv:1511.05879, 2015.
[25] WANG D, GAO X, WANG X, et al. Multimodal discriminative binary embedding for large-scale cross-modal retrieval[J]. IEEE Transactions on Image Processing, 2016, 25(10): 4540- 4554.
[26] HUISKES M J, LEW M S. The MIR flickr retrieval eval-uation[C]//Proceedings of the 1st ACM International Conference on Multimedia Information Retrieval, Vancouver, Oct 30-31, 2008. New Work: ACM, 2008: 39-43.
[27] ESCALANTE H J, HERNANDEZ C A, GONZALEZ J A, et al. The segmented and annotated IAPR TC-12 benchmark[J]. Computer Vision and Image Understanding, 2010, 114(4): 419-428.
[28] CHUA T S, TANG J H, HONG R C, et al. NUS-WIDE: a real-world web image database from National University of Singapore[C]//Proceedings of the 8th ACM International Conference on Image and Video Retrieval, Santorini Island, Jul 8-10, 2009. New York: ACM, 2009: 48.
[29] CHATFIELD K, SIMONYAN K, VEDALDI A, et al. Return of the devil in the details: delving deep into convolutional nets[J]. arXiv:1405.3531, 2014.
[30] LIN Q, CAO W, HE Z,?et al. Semantic deep cross-modal Hashing[J]. Neurocomputing, 2020, 396: 113-122.
[31] ZHANG X, LAI H J, FENG J S. Attention-aware deep adversarial Hashing for cross-modal retrieval[C]//LNCS 11219: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Berlin, Heidelberg: Springer, 2018: 614-629.
[32] HOTELLING H. Relations between two sets of variates[M]//KOTZ S, JOHNSON N L. Breakthroughs in Statistics. Berlin, Heidelberg: Springer, 1992.
[33] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
[34] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]// Proceedings of the 26th Annual Conference on Neural Information Processing Systems, Lake Tahoe, Dec 3-6, 2012. Red Hook: Curran Associates, 2012: 1106-1114.
[35] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv:1406. 1566, 2014. |