[1] DE BARROS R S M, DE CARVALHO SANTOS S G T. An overview and comprehensive comparison of ensembles for concept drift[J]. Information Fusion, 2019, 52: 213-244.
[2] LU J, LIU A J, DONG F, et al. Learning under concept drift: a review[J]. IEEE Transactions on Knowledge and Data Engineering, 2019, 31(12): 2346-2363.
[3] SUN Y G, WANG Z H, YUAN J D, et al. Adaptive ensemble classification algorithm for data streams based on information entropy[J]. Journal of University of Science and Technology of China, 2017, 47(7): 575-582.
孙艳歌, 王志海, 原继东, 等. 基于信息熵的数据流自适应集成分类算法[J]. 中国科学技术大学学报, 2017, 47(7): 575-582.
[4] DE BARROS R S M, DE CARVALHO SANTOS S G T. A large-scale comparison of concept drift detectors[J]. Infor-mation Sciences, 2018, 451/452: 348-370.
[5] GUO H S, ZHANG A J, WANG W J. Concept drift detection method based on online performance test[J]. Journal of Software, 2020, 31(4): 932-947.
郭虎升, 张爱娟, 王文剑. 基于在线性能测试的概念漂移检测方法[J]. 软件学报, 2020, 31(4): 932-947.
[6] GAMA J, MEDAS P, CASTILLO G, et al. Learning with drift detection[C]//LNCS 3171: Proceedings of the 17th Brazilian Symposium on Artificial Intelligence, S?o Luis, Sep 29-Oct 1, 2004. Berlin, Heidelberg: Springer, 2004: 286-295.
[7] DE BARROS R S M, DE LIMA CABRAL D R, GON?-ALVES P M, et al. RDDM: reactive drift detection method[J]. Expert Systems with Applications, 2017, 90: 344-355.
[8] PEARS R, SAKTHITHASAN S, KOH Y S. Detecting con-cept change in dynamic data streams[J]. Machine Learning, 2014, 97(3): 259-293.
[9] FRIAS-BLANCO I I, DEL CAMPO-áVILA J, RAMOS-JIMéNEZ G, et al. Online and non-parametric drift detec-tion methods based on Hoeffding??s bounds[J]. IEEE Transac-tions on Knowledge and Data Engineering, 2015, 27(3): 810-823.
[10] DE LIMA CABRAL D R, DE BARROS R S M. Concept drift detection based on Fisher??s exact test[J]. Information Sciences, 2018, 442/443: 220-234.
[11] GON?ALVES P M, DE BARROS R S M. RCD: a recurring concept drift framework[J]. Pattern Recognition Letters, 2013, 34(9): 1018-1025.
[12] BAI Y, WANG Z H, SUN Y G. Recurring concept detection and prediction based on the graph[J]. Journal of Zhengzhou University (Engineering Science Edition), 2017, 38(4): 57-64.
白洋, 王志海, 孙艳歌. 基于图的概念重现发现与预测[J]. 郑州大学学报(工学版), 2017, 38(4): 57-64.
[13] BRZEZINSKI D, STEFANOWSKI J. Reacting to different types of concept drift: the accuracy updated ensemble algo-rithm[J]. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(1): 81-94.
[14] BRZEZINSKI D, STEFANOWSKI J. Combining block-based and online methods in learning ensembles from concept drifting data streams[J]. Information Sciences, 2014, 265: 50-67.
[15] ELWELL R, POLIKAR R. Incremental learning of concept drift in nonstationary environments[J]. IEEE Transactions on Neural Networks, 2011, 22(10): 1517-1531.
[16] XU G Y, HAN M, WANG S F, et al. Summarization of data stream ensemble classification algorithm[J]. Application Research of Computers, 2020, 37(1): 1-8.
许冠英, 韩萌, 王少峰, 等. 数据流集成分类算法综述[J]. 计算机应用研究, 2020, 37(1): 1-8.
[17] DU S Y, HAN M, SHEN M Y, et al. Survey of ensemble classification algorithms for data streams with concept drift[J]. Computer Engineering, 2020, 46(1): 15-24.
杜诗语, 韩萌, 申明尧, 等. 概念漂移数据流集成分类算法综述[J]. 计算机工程, 2020, 46(1): 15-24.
[18] LIU A J, ZHANG G Q, LU J. Fuzzy time windowing for gradual concept drift adaptation[C]//Proceedings of the 2017 IEEE International Conference on Fuzzy Systems, Naples, Jul 9-12, 2017. Piscataway: IEEE, 2017: 1-6.
[19] KUNCHEVA L I. Change detection in streaming multivariate data using likelihood detectors[J]. IEEE Transactions on Knowledge and Data Engineering, 2013, 25(5): 1175-1180.
[20] XU Q Y, HE L, ZHU H X. Improved detection method of concept drift based on the Hoeffding inequality[J]. Computer Engineering and Applications, 2020, 56(19): 55-61.
徐清妍, 何丽, 朱泓西. 改进Hoeffding不等式的概念漂移检测方法[J]. 计算机工程与应用, 2020, 56(19): 55-61.
[21] PAN W B, CHENG G, GUO X J, et al. An adaptive class-ification approach based on information entropy for network traffic in presence of concept drift[J]. Chinese Journal of Com-puters, 2017, 40(7): 1556-1571.
潘吴斌, 程光, 郭晓军, 等. 基于信息熵的自适应网络流概念漂移分类方法[J]. 计算机学报, 2017, 40(7): 1556-1571.
[22] WARNKE L. On the method of typical bounded differences[J]. Combinatorics, Probability and Computing, 2016, 25(2): 269-299.
[23] PESARANGHADER A, VIKTOR H L, PAQUET E. Mcdiar-mid drift detection methods for evolving data streams[C]//Proceedings of the 2018 International Joint Conference on Neural Networks, Rio de Janeiro, Jul 8-13, 2018. Piscataway: IEEE, 2018: 1-9.
[24] MONTIEL J, READ J, BIFET A, et al. Scikit-multiflow: a multi-output streaming framework[J]. Journal of Machine Learning Research, 2018, 19: 72. |