计算机科学与探索 ›› 2022, Vol. 16 ›› Issue (12): 2890-2902.DOI: 10.3778/j.issn.1673-9418.2104029
• 理论与算法 • 上一篇
收稿日期:
2021-04-09
修回日期:
2021-05-27
出版日期:
2022-12-01
发布日期:
2021-06-03
通讯作者:
+E-mail: lntu_lixin@163.com作者简介:
王永贵(1967—),男,内蒙古宁城人,硕士,教授,CCF会员,主要研究方向为大数据、智能数据处理等。基金资助:
WANG Yonggui1, LI Xin1,+(), GUAN Lianzheng2
Received:
2021-04-09
Revised:
2021-05-27
Online:
2022-12-01
Published:
2021-06-03
About author:
WANG Yonggui, born in 1967, M.S., professor, member of CCF. His research interests include big data, intelligent data processing, etc.Supported by:
摘要:
针对鲸鱼优化算法在处理高维优化问题时全局勘探能力不足和易陷入局部极值的问题,提出一种改进的鲸鱼优化算法。首先,在搜索空间中采用Fuch混沌映射和优化的对立学习相结合的初始化策略,利用Fuch映射较高的搜索效率产生多样性良好的优质混沌初始种群,然后结合优化的对立学习策略在保证种群多样性的同时产生优良鲸鱼种群,为算法全局搜索奠定基础;其次,在全局勘探阶段对参数A进行调整,帮助鲸鱼种群更有效地进行全局搜索,在平衡全局勘探和局部开发的同时避免早熟收敛;最后,在局部开发阶段引入拉普拉斯算子对最优个体进行动态交叉操作,迭代前期产生距离父代较远的子代提高全局搜索能力摆脱局部极值束缚,迭代后期产生距离父代较近的子代精细搜索范围提高求解精度。选取10个标准测试函数在100维、500维、1 000维下进行仿真实验,结果表明该算法在收敛速度、求解精度和稳定性方面明显优于其他对比算法,能够有效处理高维优化问题。
中图分类号:
王永贵, 李鑫, 关连正. 求解高维优化问题的改进鲸鱼优化算法[J]. 计算机科学与探索, 2022, 16(12): 2890-2902.
WANG Yonggui, LI Xin, GUAN Lianzheng. Improved Whale Optimization Algorithm for Solving High-Dimensional Optimiza-tion Problems[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(12): 2890-2902.
函数名称 | 函数表达式 | 搜索空间 | 全局最优值 | 特性 |
---|---|---|---|---|
Griewank | [-600,600] | 0 | 单峰 | |
Powell Sum | [-1,1] | 0 | 单峰 | |
Sphere | [-5.12,5.12] | 0 | 单峰 | |
Schwefel 2.20 | [-100,100] | 0 | 单峰 | |
Schwefel 2.22 | [-100,100] | 0 | 单峰 | |
Ackley | [-32,32] | 0 | 多峰 | |
Periodic | [-10,10] | 0.9 | 多峰 | |
Quartic | [-1.28,1.28] | 0 | 多峰 | |
Rastrigin | [-5.12,5.12] | 0 | 多峰 | |
Salomon | [-5,5] | 0 | 多峰 |
表1 测试函数
Table 1 Benchmark functions
函数名称 | 函数表达式 | 搜索空间 | 全局最优值 | 特性 |
---|---|---|---|---|
Griewank | [-600,600] | 0 | 单峰 | |
Powell Sum | [-1,1] | 0 | 单峰 | |
Sphere | [-5.12,5.12] | 0 | 单峰 | |
Schwefel 2.20 | [-100,100] | 0 | 单峰 | |
Schwefel 2.22 | [-100,100] | 0 | 单峰 | |
Ackley | [-32,32] | 0 | 多峰 | |
Periodic | [-10,10] | 0.9 | 多峰 | |
Quartic | [-1.28,1.28] | 0 | 多峰 | |
Rastrigin | [-5.12,5.12] | 0 | 多峰 | |
Salomon | [-5,5] | 0 | 多峰 |
Function | Index | WOA | LWOA | LXWOA | DPWOA |
---|---|---|---|---|---|
best | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | |
f1 | worst | 5.74E-23 | 3.27E-36 | 4.93E-52 | 0.00E+00 |
mean | 6.79E-35 | 3.95E-46 | 2.87E-59 | 0.00E+00 | |
std | 1.80E-34 | 9.53E-47 | 3.53E-56 | 0.00E+00 | |
best | 1.18E-144 | 1.06E-203 | 1.36E-239 | 0.00E+00 | |
f2 | worst | 4.93E-130 | 1.92E-153 | 4.10E-225 | 0.00E+00 |
mean | 9.25E-131 | 2.45E-186 | 9.45E-226 | 0.00E+00 | |
std | 1.50E-130 | 4.47E-172 | 0.00E+00 | 0.00E+00 | |
best | 3.76E-91 | 0.00E+00 | 6.27E-132 | 0.00E+00 | |
f3 | worst | 1.05E-80 | 6.38E-85 | 1.16E-115 | 0.00E+00 |
mean | 1.05E-81 | 3.25E-93 | 2.45E-116 | 0.00E+00 | |
std | 3.16E-81 | 1.38E-90 | 4.57E-116 | 0.00E+00 | |
best | 2.24E-50 | 1.52E-61 | 2.45E-121 | 0.00E+00 | |
f4 | worst | 1.52E-48 | 5.88E-57 | 1.67E-61 | 5.47E-62 |
mean | 2.44E-49 | 7.82E-59 | 4.09E-62 | 4.11E-64 | |
std | 4.44E-49 | 1.47E-58 | 6.36E-62 | 4.08E-65 | |
best | 1.19E-51 | 1.18E-68 | 5.80E-117 | 0.00E+00 | |
f5 | worst | 4.66E-47 | 4.36E-52 | 1.25E-61 | 4.88E-308 |
mean | 5.76E-48 | 2.83E-54 | 5.42E-62 | 6.78E-309 | |
std | 1.38E-47 | 9.88E-56 | 5.20E-62 | 0.00E+00 | |
best | 8.88E-16 | 2.57E-16 | 8.88E-16 | 0.00E+00 | |
f6 | worst | 6.22E-15 | 1.12E-15 | 8.88E-16 | 0.00E+00 |
mean | 3.73E-15 | 7.08E-16 | 8.88E-16 | 0.00E+00 | |
std | 2.77E-15 | 2.24E-16 | 0.00E+00 | 0.00E+00 | |
best | 9.00E-01 | 9.00E-01 | 9.00E-01 | 9.00E-01 | |
f7 | worst | 3.80E+00 | 1.88E+00 | 9.00E-01 | 9.00E-01 |
mean | 1.27E+00 | 1.14E+00 | 9.00E-01 | 9.00E-01 | |
std | 8.58E-01 | 8.35E-01 | 0.00E+00 | 0.00E+00 | |
best | 6.22E-05 | 1.94E-06 | 8.30E-06 | 1.26E-12 | |
f8 | worst | 4.14E-03 | 8.26E-04 | 6.72E-04 | 6.74E-11 |
mean | 1.19E-03 | 5.69E-04 | 2.05E-04 | 3.54E-11 | |
std | 1.31E-03 | 6.33E-04 | 2.44E-04 | 8.37E-11 | |
best | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | |
f9 | worst | 0.00E+00 | 4.41E-268 | 0.00E+00 | 0.00E+00 |
mean | 0.00E+00 | 3.69E-328 | 0.00E+00 | 0.00E+00 | |
std | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | |
best | 9.28E-02 | 1.23E-03 | 8.99E-02 | 0.00E+00 | |
f10 | worst | 2.00E-01 | 5.41E-02 | 2.00E-01 | 0.00E+00 |
mean | 1.10E-01 | 2.72E-03 | 9.99E-02 | 0.00E+00 | |
std | 5.38E-02 | 9.00E-01 | 6.32E-02 | 0.00E+00 |
表2 求解100维测试函数的算法性能对比
Table 2 Comparison of algorithms for solving 100D functions
Function | Index | WOA | LWOA | LXWOA | DPWOA |
---|---|---|---|---|---|
best | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | |
f1 | worst | 5.74E-23 | 3.27E-36 | 4.93E-52 | 0.00E+00 |
mean | 6.79E-35 | 3.95E-46 | 2.87E-59 | 0.00E+00 | |
std | 1.80E-34 | 9.53E-47 | 3.53E-56 | 0.00E+00 | |
best | 1.18E-144 | 1.06E-203 | 1.36E-239 | 0.00E+00 | |
f2 | worst | 4.93E-130 | 1.92E-153 | 4.10E-225 | 0.00E+00 |
mean | 9.25E-131 | 2.45E-186 | 9.45E-226 | 0.00E+00 | |
std | 1.50E-130 | 4.47E-172 | 0.00E+00 | 0.00E+00 | |
best | 3.76E-91 | 0.00E+00 | 6.27E-132 | 0.00E+00 | |
f3 | worst | 1.05E-80 | 6.38E-85 | 1.16E-115 | 0.00E+00 |
mean | 1.05E-81 | 3.25E-93 | 2.45E-116 | 0.00E+00 | |
std | 3.16E-81 | 1.38E-90 | 4.57E-116 | 0.00E+00 | |
best | 2.24E-50 | 1.52E-61 | 2.45E-121 | 0.00E+00 | |
f4 | worst | 1.52E-48 | 5.88E-57 | 1.67E-61 | 5.47E-62 |
mean | 2.44E-49 | 7.82E-59 | 4.09E-62 | 4.11E-64 | |
std | 4.44E-49 | 1.47E-58 | 6.36E-62 | 4.08E-65 | |
best | 1.19E-51 | 1.18E-68 | 5.80E-117 | 0.00E+00 | |
f5 | worst | 4.66E-47 | 4.36E-52 | 1.25E-61 | 4.88E-308 |
mean | 5.76E-48 | 2.83E-54 | 5.42E-62 | 6.78E-309 | |
std | 1.38E-47 | 9.88E-56 | 5.20E-62 | 0.00E+00 | |
best | 8.88E-16 | 2.57E-16 | 8.88E-16 | 0.00E+00 | |
f6 | worst | 6.22E-15 | 1.12E-15 | 8.88E-16 | 0.00E+00 |
mean | 3.73E-15 | 7.08E-16 | 8.88E-16 | 0.00E+00 | |
std | 2.77E-15 | 2.24E-16 | 0.00E+00 | 0.00E+00 | |
best | 9.00E-01 | 9.00E-01 | 9.00E-01 | 9.00E-01 | |
f7 | worst | 3.80E+00 | 1.88E+00 | 9.00E-01 | 9.00E-01 |
mean | 1.27E+00 | 1.14E+00 | 9.00E-01 | 9.00E-01 | |
std | 8.58E-01 | 8.35E-01 | 0.00E+00 | 0.00E+00 | |
best | 6.22E-05 | 1.94E-06 | 8.30E-06 | 1.26E-12 | |
f8 | worst | 4.14E-03 | 8.26E-04 | 6.72E-04 | 6.74E-11 |
mean | 1.19E-03 | 5.69E-04 | 2.05E-04 | 3.54E-11 | |
std | 1.31E-03 | 6.33E-04 | 2.44E-04 | 8.37E-11 | |
best | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | |
f9 | worst | 0.00E+00 | 4.41E-268 | 0.00E+00 | 0.00E+00 |
mean | 0.00E+00 | 3.69E-328 | 0.00E+00 | 0.00E+00 | |
std | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | |
best | 9.28E-02 | 1.23E-03 | 8.99E-02 | 0.00E+00 | |
f10 | worst | 2.00E-01 | 5.41E-02 | 2.00E-01 | 0.00E+00 |
mean | 1.10E-01 | 2.72E-03 | 9.99E-02 | 0.00E+00 | |
std | 5.38E-02 | 9.00E-01 | 6.32E-02 | 0.00E+00 |
Function | Index | WOA | LWOA | LXWOA | DPWOA |
---|---|---|---|---|---|
best | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | |
f1 | worst | 4.78E-21 | 5.28E-35 | 4.85E-50 | 0.00E+00 |
mean | 7.54E-32 | 8.68E-43 | 3.68E-56 | 0.00E+00 | |
std | 3.68E-32 | 1.36E-45 | 8.78E-55 | 0.00E+00 | |
best | 9.52E-144 | 9.28E-201 | 7.17E-237 | 0.00E+00 | |
f2 | worst | 6.47E-122 | 3.68E-152 | 3.43E-224 | 0.00E+00 |
mean | 6.47E-123 | 4.15E-187 | 6.95E-225 | 0.00E+00 | |
std | 1.94E-122 | 5.26E-168 | 0.00E+00 | 0.00E+00 | |
best | 7.49E-88 | 6.85E-207 | 1.26E-115 | 0.00E+00 | |
f3 | worst | 2.02E-80 | 8.21E-82 | 4.78E-110 | 0.00E+00 |
mean | 3.66E-81 | 5.28E-88 | 9.57E-111 | 0.00E+00 | |
std | 7.21E-81 | 4.75E-87 | 1.90E-110 | 0.00E+00 | |
best | 3.94E-50 | 2.06E-60 | 6.06E-117 | 0.00E+00 | |
f4 | worst | 2.79E-45 | 6.13E-56 | 1.33E-58 | 7.71E-62 |
mean | 3.53E-46 | 6.88E-58 | 3.24E-59 | 6.50E-64 | |
std | 8.42E-46 | 4.29E-57 | 5.13E-59 | 5.62E-65 | |
best | 5.75E-51 | 4.52E-62 | 9.13E-116 | 0.00E+00 | |
f5 | worst | 1.58E-46 | 1.38E-51 | 4.49E-47 | 6.54E-306 |
mean | 3.79E-47 | 4.37E-52 | 9.24E-48 | 2.55E-307 | |
std | 5.15E-47 | 3.51E-54 | 1.78E-47 | 0.00E+00 | |
best | 8.88E-16 | 2.86E-16 | 8.88E-16 | 0.00E+00 | |
f6 | worst | 6.22E-15 | 1.98E-15 | 8.88E-16 | 0.00E+00 |
mean | 3.82E-15 | 7.41E-16 | 8.88E-16 | 0.00E+00 | |
std | 2.84E-15 | 2.62E-16 | 0.00E+00 | 0.00E+00 | |
best | 9.00E-01 | 9.00E-01 | 9.00E-01 | 9.00E-01 | |
f7 | worst | 5.46E+00 | 3.58E+00 | 9.00E-01 | 9.00E-01 |
mean | 2.86E+00 | 2.37E+00 | 9.00E-01 | 9.00E-01 | |
std | 9.87E-01 | 8.95E-01 | 0.00E+00 | 0.00E+00 | |
best | 4.07E-04 | 4.59E-06 | 5.49E-05 | 3.58E-12 | |
f8 | worst | 3.06E-03 | 8.39E-03 | 1.73E-03 | 9.58E-11 |
mean | 1.24E-03 | 9.68E-04 | 7.34E-04 | 9.98E-11 | |
std | 9.58E-04 | 7.85E-04 | 6.61E-04 | 8.85E-11 | |
best | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | |
f9 | worst | 3.43E-203 | 4.06E-252 | 5.39E-265 | 0.00E+00 |
mean | 9.68E-269 | 7.56E-306 | 8.12E-278 | 0.00E+00 | |
std | 4.02E-253 | 0.00E+00 | 0.00E+00 | 0.00E+00 | |
best | 1.56E-01 | 2.72E-02 | 8.99E-02 | 0.00E+00 | |
f10 | worst | 9.35E-01 | 8.25E-01 | 2.00E-01 | 0.00E+00 |
mean | 5.10E-01 | 6.57E-02 | 1.20E-01 | 0.00E+00 | |
std | 4.98E-01 | 7.58E-01 | 7.48E-02 | 0.00E+00 |
表3 求解500维测试函数的算法性能对比
Table 3 Comparison of algorithms for solving 500D functions
Function | Index | WOA | LWOA | LXWOA | DPWOA |
---|---|---|---|---|---|
best | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | |
f1 | worst | 4.78E-21 | 5.28E-35 | 4.85E-50 | 0.00E+00 |
mean | 7.54E-32 | 8.68E-43 | 3.68E-56 | 0.00E+00 | |
std | 3.68E-32 | 1.36E-45 | 8.78E-55 | 0.00E+00 | |
best | 9.52E-144 | 9.28E-201 | 7.17E-237 | 0.00E+00 | |
f2 | worst | 6.47E-122 | 3.68E-152 | 3.43E-224 | 0.00E+00 |
mean | 6.47E-123 | 4.15E-187 | 6.95E-225 | 0.00E+00 | |
std | 1.94E-122 | 5.26E-168 | 0.00E+00 | 0.00E+00 | |
best | 7.49E-88 | 6.85E-207 | 1.26E-115 | 0.00E+00 | |
f3 | worst | 2.02E-80 | 8.21E-82 | 4.78E-110 | 0.00E+00 |
mean | 3.66E-81 | 5.28E-88 | 9.57E-111 | 0.00E+00 | |
std | 7.21E-81 | 4.75E-87 | 1.90E-110 | 0.00E+00 | |
best | 3.94E-50 | 2.06E-60 | 6.06E-117 | 0.00E+00 | |
f4 | worst | 2.79E-45 | 6.13E-56 | 1.33E-58 | 7.71E-62 |
mean | 3.53E-46 | 6.88E-58 | 3.24E-59 | 6.50E-64 | |
std | 8.42E-46 | 4.29E-57 | 5.13E-59 | 5.62E-65 | |
best | 5.75E-51 | 4.52E-62 | 9.13E-116 | 0.00E+00 | |
f5 | worst | 1.58E-46 | 1.38E-51 | 4.49E-47 | 6.54E-306 |
mean | 3.79E-47 | 4.37E-52 | 9.24E-48 | 2.55E-307 | |
std | 5.15E-47 | 3.51E-54 | 1.78E-47 | 0.00E+00 | |
best | 8.88E-16 | 2.86E-16 | 8.88E-16 | 0.00E+00 | |
f6 | worst | 6.22E-15 | 1.98E-15 | 8.88E-16 | 0.00E+00 |
mean | 3.82E-15 | 7.41E-16 | 8.88E-16 | 0.00E+00 | |
std | 2.84E-15 | 2.62E-16 | 0.00E+00 | 0.00E+00 | |
best | 9.00E-01 | 9.00E-01 | 9.00E-01 | 9.00E-01 | |
f7 | worst | 5.46E+00 | 3.58E+00 | 9.00E-01 | 9.00E-01 |
mean | 2.86E+00 | 2.37E+00 | 9.00E-01 | 9.00E-01 | |
std | 9.87E-01 | 8.95E-01 | 0.00E+00 | 0.00E+00 | |
best | 4.07E-04 | 4.59E-06 | 5.49E-05 | 3.58E-12 | |
f8 | worst | 3.06E-03 | 8.39E-03 | 1.73E-03 | 9.58E-11 |
mean | 1.24E-03 | 9.68E-04 | 7.34E-04 | 9.98E-11 | |
std | 9.58E-04 | 7.85E-04 | 6.61E-04 | 8.85E-11 | |
best | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | |
f9 | worst | 3.43E-203 | 4.06E-252 | 5.39E-265 | 0.00E+00 |
mean | 9.68E-269 | 7.56E-306 | 8.12E-278 | 0.00E+00 | |
std | 4.02E-253 | 0.00E+00 | 0.00E+00 | 0.00E+00 | |
best | 1.56E-01 | 2.72E-02 | 8.99E-02 | 0.00E+00 | |
f10 | worst | 9.35E-01 | 8.25E-01 | 2.00E-01 | 0.00E+00 |
mean | 5.10E-01 | 6.57E-02 | 1.20E-01 | 0.00E+00 | |
std | 4.98E-01 | 7.58E-01 | 7.48E-02 | 0.00E+00 |
Function | Index | WOA | LWOA | LXWOA | DPWOA |
---|---|---|---|---|---|
best | 3.06E-28 | 0.00E+00 | 0.00E+00 | 0.00E+00 | |
f1 | worst | 6.58E+00 | 8.12E-35 | 6.51E-49 | 0.00E+00 |
mean | 9.31E-19 | 2.39E-44 | 4.39E-57 | 0.00E+00 | |
std | 1.06E-18 | 6.29E-44 | 1.01E-56 | 0.00E+00 | |
best | 3.73E-148 | 8.27E-201 | 4.13E-238 | 0.00E+00 | |
f2 | worst | 8.03E-70 | 1.63E-110 | 1.11E-115 | 4.91E-245 |
mean | 1.61E-131 | 9.12E-163 | 2.22E-179 | 0.00E+00 | |
std | 3.21E-131 | 2.68E-165 | 8.14E-171 | 0.00E+00 | |
best | 1.64E-88 | 2.09E-205 | 6.11E-127 | 0.00E+00 | |
f3 | worst | 3.26E-45 | 5.49E-81 | 4.25E-107 | 0.00E+00 |
mean | 1.31E-80 | 3.37E-86 | 8.50E-108 | 0.00E+00 | |
std | 1.11E-80 | 3.14E-85 | 1.70E-107 | 0.00E+00 | |
best | 1.12E-48 | 7.28E-58 | 9.55E-85 | 0.00E+00 | |
f4 | worst | 2.14E-45 | 6.88E-48 | 5.70E-37 | 8.83E-62 |
mean | 4.55E-46 | 5.15E-52 | 1.20E-56 | 6.52E-64 | |
std | 8.41E-46 | 5.21E-53 | 2.25E-58 | 7.46E-65 | |
best | 2.01E-47 | 8.52E-62 | 3.25E-115 | 0.00E+00 | |
f5 | worst | 1.52E-45 | 3.26E-45 | 1.99E-37 | 8.29E-306 |
mean | 3.60E-46 | 4.87E-46 | 5.35E-38 | 1.34E-307 | |
std | 5.81E-46 | 3.51E-51 | 7.55E-38 | 0.00E+00 | |
best | 8.88E-16 | 2.86E-16 | 8.88E-16 | 0.00E+00 | |
f6 | worst | 1.33E-14 | 2.86E-15 | 2.86E-15 | 8.88E-16 |
mean | 5.86E-15 | 8.36E-16 | 8.88E-16 | 1.23E-16 | |
std | 4.26E-15 | 6.38E-16 | 0.00E+00 | 3.55E-17 | |
best | 9.00E-01 | 9.00E-01 | 9.00E-01 | 9.00E-01 | |
f7 | worst | 9.19E+00 | 3.96E+00 | 9.00E-01 | 9.00E-01 |
mean | 5.02E+00 | 3.76E+00 | 9.00E-01 | 9.00E-01 | |
std | 9.97E-01 | 9.03E-01 | 0.00E+00 | 0.00E+00 | |
best | 9.19E-04 | 1.37E-05 | 7.62E-05 | 4.21E-12 | |
f8 | worst | 7.60E-01 | 9.81E-02 | 1.65E-02 | 9.88E-04 |
mean | 4.57E-03 | 3.55E-03 | 5.38E-04 | 1.37E-10 | |
std | 2.62E-03 | 8.19E-04 | 5.86E-04 | 2.06E-10 | |
best | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | |
f9 | worst | 7.36E-228 | 7.28E-266 | 2.36E-263 | 0.00E+00 |
mean | 1.34E-253 | 1.16E-277 | 8.47E-282 | 0.00E+00 | |
std | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | |
best | 2.37E-01 | 3.52E-02 | 9.99E-02 | 0.00E+00 | |
f10 | worst | 6.25E-01 | 9.34E-01 | 2.00E-01 | 0.00E+00 |
mean | 5.34E-01 | 9.27E-02 | 1.20E-01 | 0.00E+00 | |
std | 5.88E-01 | 8.04E-01 | 7.61E-02 | 0.00E+00 |
表4 求解1 000维测试函数的算法性能对比
Table 4 Comparison of algorithms for solving 1000D functions
Function | Index | WOA | LWOA | LXWOA | DPWOA |
---|---|---|---|---|---|
best | 3.06E-28 | 0.00E+00 | 0.00E+00 | 0.00E+00 | |
f1 | worst | 6.58E+00 | 8.12E-35 | 6.51E-49 | 0.00E+00 |
mean | 9.31E-19 | 2.39E-44 | 4.39E-57 | 0.00E+00 | |
std | 1.06E-18 | 6.29E-44 | 1.01E-56 | 0.00E+00 | |
best | 3.73E-148 | 8.27E-201 | 4.13E-238 | 0.00E+00 | |
f2 | worst | 8.03E-70 | 1.63E-110 | 1.11E-115 | 4.91E-245 |
mean | 1.61E-131 | 9.12E-163 | 2.22E-179 | 0.00E+00 | |
std | 3.21E-131 | 2.68E-165 | 8.14E-171 | 0.00E+00 | |
best | 1.64E-88 | 2.09E-205 | 6.11E-127 | 0.00E+00 | |
f3 | worst | 3.26E-45 | 5.49E-81 | 4.25E-107 | 0.00E+00 |
mean | 1.31E-80 | 3.37E-86 | 8.50E-108 | 0.00E+00 | |
std | 1.11E-80 | 3.14E-85 | 1.70E-107 | 0.00E+00 | |
best | 1.12E-48 | 7.28E-58 | 9.55E-85 | 0.00E+00 | |
f4 | worst | 2.14E-45 | 6.88E-48 | 5.70E-37 | 8.83E-62 |
mean | 4.55E-46 | 5.15E-52 | 1.20E-56 | 6.52E-64 | |
std | 8.41E-46 | 5.21E-53 | 2.25E-58 | 7.46E-65 | |
best | 2.01E-47 | 8.52E-62 | 3.25E-115 | 0.00E+00 | |
f5 | worst | 1.52E-45 | 3.26E-45 | 1.99E-37 | 8.29E-306 |
mean | 3.60E-46 | 4.87E-46 | 5.35E-38 | 1.34E-307 | |
std | 5.81E-46 | 3.51E-51 | 7.55E-38 | 0.00E+00 | |
best | 8.88E-16 | 2.86E-16 | 8.88E-16 | 0.00E+00 | |
f6 | worst | 1.33E-14 | 2.86E-15 | 2.86E-15 | 8.88E-16 |
mean | 5.86E-15 | 8.36E-16 | 8.88E-16 | 1.23E-16 | |
std | 4.26E-15 | 6.38E-16 | 0.00E+00 | 3.55E-17 | |
best | 9.00E-01 | 9.00E-01 | 9.00E-01 | 9.00E-01 | |
f7 | worst | 9.19E+00 | 3.96E+00 | 9.00E-01 | 9.00E-01 |
mean | 5.02E+00 | 3.76E+00 | 9.00E-01 | 9.00E-01 | |
std | 9.97E-01 | 9.03E-01 | 0.00E+00 | 0.00E+00 | |
best | 9.19E-04 | 1.37E-05 | 7.62E-05 | 4.21E-12 | |
f8 | worst | 7.60E-01 | 9.81E-02 | 1.65E-02 | 9.88E-04 |
mean | 4.57E-03 | 3.55E-03 | 5.38E-04 | 1.37E-10 | |
std | 2.62E-03 | 8.19E-04 | 5.86E-04 | 2.06E-10 | |
best | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | |
f9 | worst | 7.36E-228 | 7.28E-266 | 2.36E-263 | 0.00E+00 |
mean | 1.34E-253 | 1.16E-277 | 8.47E-282 | 0.00E+00 | |
std | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | |
best | 2.37E-01 | 3.52E-02 | 9.99E-02 | 0.00E+00 | |
f10 | worst | 6.25E-01 | 9.34E-01 | 2.00E-01 | 0.00E+00 |
mean | 5.34E-01 | 9.27E-02 | 1.20E-01 | 0.00E+00 | |
std | 5.88E-01 | 8.04E-01 | 7.61E-02 | 0.00E+00 |
[1] | 龙文, 蔡绍洪, 焦建军, 等. 求解高维优化问题的混合灰狼优化算法[J]. 控制与决策, 2016, 31(11): 1991-1997. |
LONG W, CAI S H, JIAO J J, et al. Hybrid gray wolf opti-mization algorithm for solving high-dimensional optimization problems[J]. Control and Decision, 2016, 31(11): 1991-1997. | |
[2] |
MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67.
DOI URL |
[3] |
王芙银, 张德生, 张晓. 结合鲸鱼优化算法的自适应密度峰值聚类算法[J]. 计算机工程与应用, 2021, 57(3): 94-102.
DOI |
WANG F Y, ZHANG D S, ZHANG X. Adaptive density peaking clustering algorithm combined with whale optimi-zation algorithm[J]. Computer Engineering and Applications, 2021, 57(3): 94-102. | |
[4] | MOUSAVIRAD S J, EBRAHIMPOUR-KOMLEH H. Multilevel image thresholding using entropy of histogram and recently developed population-based metaheuristic algorithms[J]. Evolu-tionary Intelligence, 2017, 10(1/2): 45-75. |
[5] | SAIDALA R K, DEVARAKONDA N. Improved whale op-timization algorithm case study: clinical data of anaemic pregnant woman[M]// SATAPATHYS C, BHATEJAV, RAJUK S, eds. Data Engineering and Intelligent Computing. Sin-gapore: Springer, 2018: 271-281. |
[6] |
KAVEH A, GHAZAAN M I. Enhanced whale optimization algorithm for sizing optimization of skeletal structures[J]. Mechanics Based Design of Structures and Machines, 2017, 45(3): 345-362.
DOI URL |
[7] |
张公凯, 陈才学, 郑拓. 改进鲸鱼算法在电动汽车有序充电中的应用[J]. 计算机工程与应用, 2021, 57(4): 272-278.
DOI |
ZHANG G K, CHEN C X, ZHENG T. Application of im-proved whale optimization algorithm in ordered charging of electric vehicle[J]. Computer Engineering and Applica-tions, 2021, 57(4): 272-278. | |
[8] |
OLIV D, MOHAMED A E A, HASSANIEN A E. Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm[J]. Applied Energy, 2017, 200(15): 141-154.
DOI URL |
[9] | TRIVEDI I N, JANGIR P, KUMAR A, et al. A novel hybrid PSO-WOA algorithm for global numerical functions optimi-zation[M]// BHATIAS K, MISHRAK K, TIWARIS, eds. Advances in Computer and Computational Sciences. Cham: Springer, 2018: 53-60. |
[10] |
MAFARJA M M, MIRJALILI S. Hybrid whale optimization algorithm with simulated annealing for feature selection[J]. Neurocomputing, 2017, 260: 302-312.
DOI URL |
[11] | KHALILPOURAZARI S, KHALILPOURAZARY S. SCWOA: an efficient hybrid algorithm for parameter optimization of multi-pass milling process[J]. Journal of Industrial and Pro-duction Engineering, 2018, 35(3): 135-147. |
[12] |
KAUR G, ARORA S. Chaotic whale optimization algorithm[J]. Journal of Computational Design and Engineering, 2018, 5(3): 275-284.
DOI URL |
[13] |
SAYED G I, DARWISH A, HASSANIEN A E. A new chaotic whale optimization algorithm for features selection[J]. Journal of Classification, 2018, 35(2): 300-344.
DOI URL |
[14] |
CHEN H, XU Y, WANG M, et al. A balanced whale opti-mization algorithm for constrained engineering design pro-blems[J]. Applied Mathematical Modelling, 2019, 71: 45-59.
DOI URL |
[15] |
CHEN H, YANG C, HEIDARI A A, et al. An efficient dou-ble adaptive random spare reinforced whale optimization algorithm[J]. Expert Systems with Applications, 2020, 154: 113018.
DOI URL |
[16] |
肖子雅, 刘升. 精英反向黄金正弦鲸鱼算法及其工程优化研究[J]. 电子学报, 2019, 47(10): 2177-2186.
DOI |
XIAO Z Y, LIU S. Study on elite opposition-based golden-sine whale optimization algorithm and its application of pro-ject optimization[J]. Acta Electronica Sinica, 2019, 47(10):2177-2186. | |
[17] | 涂春梅, 陈国彬, 刘超. 混沌反馈自适应鲸鱼优化算法研究[J]. 统计与决策, 2019, 35(7): 17-20. |
TU C M, CHEN G B, LIU C. Research on chaotic feedback adaptive whale optimization algorithm[J]. Statistics and Deci-sion, 2019, 35(7): 17-20. | |
[18] | HUSSIEN A G, HASSANIEN A E, HOUSSEIN E H, et al. S-shaped binary whale optimization algorithm for feature selection[M]// BHATTACHARYYAS, MUKHERJEEA, BH-AUMIKH, eds. Recent Trends in Signal and Image Pro-cessing. Cham: Springer, 2019: 79-87. |
[19] |
SUN Y J, WANG X L, CHEN Y H, et al. A modified whale optimization algorithm for large-scale global optimization problems[J]. Expert Systems with Applications, 2018, 114: 563-577.
DOI URL |
[20] |
HEIDARI A A, ALJARAH I, FARIS H, et al. An enhanced associative learning-based exploratory whale optimizer for global optimization[J]. Neural Computing and Applications, 2020, 32(9): 5185-5211.
DOI URL |
[21] | 匡芳君, 金忠, 徐蔚鸿, 等. Tent混沌人工蜂群与粒子群混合算法[J]. 控制与决策, 2015, 30(5): 839-847. |
KUANG F J, JIN Z, XU W H, et al. Hybridization algorithm of Tent chaos artificial bee colony and particle swarm opti-mization[J]. Control and Decision, 2015, 30(5): 839-847. | |
[22] |
赵世杰, 高雷阜, 于冬梅, 等. 带混沌侦查机制的蚁狮优化算法优化SVM参数[J]. 计算机科学与探索, 2016, 10(5): 722-731.
DOI URL |
ZHAO S J, GAO L F, YU D M, et al. Ant lion optimizer with chaotic investigation mechanism for optimizing SVM parameters[J]. Journal of Frontiers of Computer Science and Technology, 2016, 10(5): 722-731.
DOI URL |
|
[23] | 傅文渊, 凌朝东. 自适应折叠混沌优化方法[J]. 西安交通大学学报, 2013, 47(2): 33-38. |
FU W Y, LING C D. An adaptive iterative chaos optimi-zation method[J]. Journal of Xi’an Jiaotong University, 2013, 47(2): 33-38. | |
[24] | DEEP K, THAKUR M. A new crossover operator for real coded genetic algorithms[J]. Applied Mathematics & Com-putation, 2007, 188(1): 895-911. |
[25] | TIZHOOSH H R. Opposition-based learning: a new scheme for machine intelligence[C]// Proceedings of the 2005 Inter-national Conference on Computational Intelligence for Mo-delling Control and Automation, International Conference on Intelligent Agents, Web Technologies and Internet Com-merce, Vienna, Nov 28-30, 2005. Washington: IEEE Computer Society, 2005: 695-701. |
[26] |
ZHOU Y, LING Y Q, LUO Q F. Lévy flight trajectory-based whale optimization algorithm for global optimization[J]. IEEE Access, 2017, 5: 6168-6186.
DOI URL |
[27] | SINGH A. Laplacian whale optimization algorithm[J]. Inter-national Journal of System Assurance Engineering and Ma-nagement, 2019, 10(4): 713-730. |
[28] | JAMIL M, YANG X S. A literature survey of benchmark functions for global optimization problems[J]. International Journal of Mathematical Modelling & Numerical Optimisa-tion, 2013, 4(2): 150-194. |
[29] |
王永贵, 张博雅, 吕欢欢. 自适应多普勒补偿与变异选择的蝙蝠算法[J]. 计算机科学与探索, 2020, 14(1): 125-139.
DOI URL |
WANG Y G, ZHANG B Y, LV H H. Self-adaptive Doppler compensation and mutation choice of bat algorithm[J]. Jour-nal of Frontiers of Computer Science and Technology, 2020, 14(1): 125-139. |
[1] | 陈兰, 王联国. 极值个体引导的人工蜂群算法[J]. 计算机科学与探索, 2022, 16(11): 2628-2641. |
[2] | 陈磊, 吴润秀, 李沛武, 赵嘉. 加权K近邻和多簇合并的密度峰值聚类算法[J]. 计算机科学与探索, 2022, 16(9): 2163-2176. |
[3] | 周小祥, 黄承锋, 李豪. 考虑服务和认知差异的网络零售商竞争策略[J]. 计算机科学与探索, 2022, 16(9): 2096-2107. |
[4] | 王铁旦, 张雨晴, 彭定洪. 云模型双重积分算子的层次多属性决策方法[J]. 计算机科学与探索, 2022, 16(8): 1898-1909. |
[5] | 张麟宇, 涂志莹, 杭少石, 张柏林, 初佃辉. 面向智慧康养的数据集构建方法及其应用[J]. 计算机科学与探索, 2022, 16(7): 1543-1551. |
[6] | 张硕航, 郭改枝. 多旅行商模型及其应用研究综述[J]. 计算机科学与探索, 2022, 16(7): 1516-1528. |
[7] | 李守玉, 何庆, 杜逆索. 混沌反馈共享和群体协同效应的蝴蝶优化算法[J]. 计算机科学与探索, 2022, 16(7): 1661-1672. |
[8] | 郭羽含, 刘秋月. 时空轨迹和复合收益的动态上车点推荐[J]. 计算机科学与探索, 2022, 16(7): 1611-1622. |
[9] | 贾鹤鸣, 刘宇翔, 刘庆鑫, 王爽, 郑荣. 融合随机反向学习的黏菌与算术混合优化算法[J]. 计算机科学与探索, 2022, 16(5): 1182-1192. |
[10] | 刘立群, 顾任远. 核中心驱动混合蛙跳算法及其应用[J]. 计算机科学与探索, 2022, 16(5): 1169-1181. |
[11] | 刘宇, 孟敏, 武继刚. 一致性约束的半监督多视图分类[J]. 计算机科学与探索, 2022, 16(1): 242-252. |
[12] | 高 纯1,2,3+ , 王睿智1,2,3 . 知识空间理论析取模型下最小技能集的生成[J]. 计算机科学与探索, 2010, 4(12): 1109-1114. |
[13] | 任家东1,2 , 周玮玮1+ , 何海涛1 . 高维数据流的自适应子空间聚类算法[J]. 计算机科学与探索, 2010, 4(9): 859-864. |
[14] | 韩 敏,唐常杰+,段 磊,李 川,巩 杰. 基于TF-IDF相似度的标签聚类方法[J]. 计算机科学与探索, 2010, 4(3): 240-246. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||