[1] YU L F, DENG F H, QIN S W, et al. Classification method based on
hierarchical features of fundus image[J]. Journal of Computer Applications,
2019, 39(9): 2575-2579.
余林芳, 邓伏虎, 秦少威, 等. 基于眼底图像层次特征的分类方法[J]. 计算机应用, 2019,
39(9): 2575-2579.
[2] LI D X, ZHANG Z. Improved U-Net segmentation algori-thm
for the retinal blood vessel images[J]. Acta Optica Sinica, 2020, 40(10):
64-72.
[3] CHAUDHURI S, CHATTERJEE S, KATZ N, et al. Detec-tion of blood
vessels in retinal images using two-dimensional matched filters[J]. IEEE
Transactions on Medical Imaging, 1989, 8(3): 263-269.
[4] BEKKERS E J, DUITS
R, BERENDSCHOT T, et al. A multi-orientation analysis approach to retinal vessel
tracking[J]. Journal of Mathematical Imaging and Vision, 2014, 49(3):
583-610.
[5] YANG Y, HUANG S Y, RAO N. An automatic hybrid met-hod for
retinal blood vessel extraction[J]. International Jour-nal of Applied
Mathematics and Computer Science, 2008, 18(3): 399-407.
[6] DE J, CHENG L,
ZHANG X W, et al. A graph-theoretical approach for tracing filamentary
structures in neuronal and retinal images[J]. IEEE Transactions on Medical
Imaging, 2016, 35(1): 257-272.
[7] ZHAO Y T, RADA L, CHEN K, et al. Automated
vessel segmentation using infinite perimeter active contour model with hybrid
region information with application to retinal images[J]. IEEE Transactions on
Medical Imaging, 2015, 34(9): 1797-1807.
[8] RICCI E, PERFETTI R. Retinal
blood vessel segmentation using line operators and support vector
classification[J]. IEEE Transactions on Medical Imaging, 2007, 26(10):
1357-1365.
[9] MENG L, LIU J, CAO H, et al. Retinal vessel segmentation based
on Frangi filter and Otsu algorithm[J]. Progress in Laser and Optoelectronics,
2019,?65(18): 119-125.
孟琳,?刘静,?曹慧, 等.?基于Frangi滤波器和Otsu视网膜血管分割[J].
激光与光电子学进展,?2019,?65(18): 119-125.
[10] LISKOWSKI P, KRAWIEC K. Segmenting
retinal blood vessels with deep neural networks[J]. IEEE Transactions on Medical
Imaging, 2016, 35(11): 2369-2380.
[11] RONNEBERGER O, FISCHER P, BROX T.
U-Net: con-volutional networks for biomedical image segmentation[C]//LNCS 9351:
Proceedings of the 2015 International Conference on Medical Image Computing and
Computer-Assisted Intervention. Cham: Springer, 2015: 234-241.
[12] XUE W X,
LIU J X, LIU R, et al. An improved method for retinal vasular segmentation in
U-Net[J]. Acta Optica Sinica, 2020, 40(12): 100-110.
薛文渲, 刘建霞, 刘然, 等.
改进U型网络的眼底视网膜血管分割方法[J]. 光学学报, 2020, 40(12): 100-110.
[13] LI D, RAHARDJA S.
BSEResU-Net: an attention-based before-activation residual U-Net for retinal
vessel segmen-tation[J]. Computer Methods and Programs in Biomedicine, 2021,
205: 106070.
[14] DONGYE C, MA Y Y. An improved U-Net method with
high-resolution feature maps for retinal blood vessel seg-mentation[J]. Journal
of Physics: Conference Series, 2021(1): 012099.
[15] HU Y T, PEI Y, LIN C, et
al. Atrous residual U-Net for retinal vessel segmentation[J]. Computer
Engineering and Applications, 2021,?57(7):?185-191.
胡扬涛, 裴洋, 林川,
等.?空洞残差U型网络用于视网膜血管分割[J].?计算机工程与应用,?2021,?57(7):?185-191.
[16] SZEGEDY C,
IOFFE S, VANHOUCKE V, et al. Inception-v4, Inception-ResNet and the impact of
residual connec-tions on learning[J]. arXiv:1602.07261, 2016.
[17] DROZDZAL
M, VORONTSOV E, CHARTRAND G, et al. The importance of skip connections in
biomedical image segmentation[C]//LNCS 10008: Proceedings of the 1st
In-ternational Workshop on Deep Learning and Data Labeling for Medical
Applications, Athens, Oct 21, 2016. Cham:Springer, 2016: 179-187.
[18] NABIL
I, SOHEL R M. MultiResUNet: rethinking the U-Net architecture for multimodal
biomedical images segmen-tation[J]. arXiv:1902.04049, 2019.
[19] HE K, ZHANG
X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of
the 2016 IEEE Con-ference on Computer Vision and Pattern Recognition, Las Vegas,
Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 770-778.
[20] WANG
E, JIANG Y, LI Y, et al. MFCSNet: multi-scale deep features fusion and
cost-sensitive loss function-based segmentation network for remote sensing
images[J]. Applied Sciences, 2019, 9(19): 4043.
[21] LI Y Y, CAI Y H, GAO X
R. Retinal vessel segmentation algorithm based on hybrid phase feature[J].
Journal of Com-puter Applications, 2018, 38(7): 2083-2088.
李媛媛, 蔡轶珩, 高旭蓉.
基于融合相位特征的视网膜血管分割算法[J]. 计算机应用, 2018, 38(7): 2083-2088.
[22] ZHAO Y, ZHANG J H.
Multi-scale feature fusion method for spinal X-Ray image segmentation[J].
Computer Engi-neering and Applications,?2021,?57(8):?214-219.
赵阳,
张俊华.?多尺度特征融合的脊柱X线图像分割方法[J].?计算机工程与应用,?2021,?57(8):?214-219.
[23] ZHUANG J T.
LadderNet: multi-path networks based on U-Net for medical image segmentation[J].
arXiv:1810.07810, 2018.
[24] JIN Q G, MENG Z P, PHAM T D, et al. DUNet: a
deforma-ble network for retinal vessel segmentation[J]. Knowledge-Based Systems,
2019, 178: 149-162.
[25] LI Q L, FENG B W, XIE L P, et al. A cross-modality
lear-ning approach for vessel segmentation in retinal images[J]. IEEE
Transactions on Medical Imaging, 2016, 35(1): 109-118.
[26] ORLANDO J I,
PROKOFYEVA E, BLASCHKO M B. A discriminatively trained fully connected
conditional ran-dom field model for blood vessel segmentation in fundus
images[J]. IEEE Transactions on Biomedical Engineering, 2017, 64(1):
16-27.
[27] ALOM M Z, HASAN M, YAKOPCIC C, et al. Recurrent residual
convolutional neural network based on U-Net (R2U-Net) for medical image
segmentation[J]. arXiv:1802.06955, 2018.
[28] WU Y C, YONG X, YANG S, et al.
Multiscale network followed network model for retinal vessel
segmentation[C]//LNCS 11071: Proceedings of the 21st International Confe-rence
on Medical Image Computing and Computer Assisted Intervention, Granada, Sep
16-20, 2018. Cham: Springer, 2018: 119-126.
[29] WANG B, QIU S, HE H G. Dual
encoding U-Net for retinal vessel segmentation[C]//LNCS 11764: Proceedings of
the 22nd International Conference on Medical Image Computing and Computer
Assisted Intervention, Shenzhen, Oct 13-17, 2019. Cham: Springer, 2019:
84-92.
[30] DAN Y, LIU G R, REN M C, et al. A multi-scale feature fusion
method based on U-Net for retinal vessel segmenta-tion[J]. Entropy, 2020, 22(8):
811.
[31] ATLI B, GEDIK O S. Sine-Net: a fully convolutional deep learning
architecture for retinal blood vessel segmentation[J]. Engineering Science and
Technology, an International Journal, 2021, 24(2): 271-283.
|