[1] Pulagam A R, Kande G B, Ede V K R, et al. Automated lung segmentation from HRCT scans with diffuse parenchymal lung diseases[J]. Digit Imaging, 2016, 29: 507-519.
[2] Mansoor A, Bagci U, Foster B, et al. Segmentation and image analysis of abnormal lungs at CT: current approaces, chal-lenges, and future trends[J]. Radiographics, 2015, 35(4): 1056-1076.
[3] Hu S, Hoffman E A, Reinhardt J M. Automatic lung segmen-tation for accurate quantitation of volumetric X-ray CT ima-ges[J]. IEEE Transactions on Medical Imaging, 2001, 20(6): 490-498.
[4] Adams R, Bischof L. Seeded region growing[J]. IEEE Tran-sactions on Pattern Analysis and Machine Intelligence, 1994, 16(6): 641-647.
[5] Xiao G, Yun X, Wu J M. A multi-cue mean-shift target trac-king approach based on fuzzified region dynamic image fusion[J]. Science China (Information Sciences), 2012, 55(3): 577-589.
[6] Long J, Shelhamer E, Darrell T, et al. Fully convolutional networks for semantic segmentation[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, Jun 7-13, 2015. Piscataway: IEEE, 2015: 3434-3440.
[7] Ronneberger O, Fischer P, Brox T, et al. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Com-puting and Computer-Assisted Intervention, Munich, Oct 5-9, 2015. Cham: Springer, 2015: 234-241.
[8] Milletari F, Navab N, Ahmadi S A. V-Net: fully convolu-tional neural networks for volumetric medical image segmen-tation[C]//Proceedings of the 4th International Conference on 3D Vision, Stanford, Oct 25-28, 2016. Washington: IEEE Computer Society, 2016: 565-571.
[9] Zhao H S, Shi J P, Qi X J, et al. Pyramid scene parsing net-work[C]//Proceedings of the 30th IEEE Conference on Com-puter Vision and Pattern Recogntion. Washington: IEEE Com-puter Society, 2017: 6230-6239.
[10] He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Com-puter Society Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2016: 770-778.
[11] Glorot X, Bordes A, Bengio Y. Deep sparse rectifier neural networks[J]. Journal of Machine Learning Research, 2011, 15: 315-323.
[12] Yu F, Koltun V. Multi-scale context aggregation by dilated convolutions[J]. arXiv:1511.07122, 2015.
[13] Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]//Pro-ceedings of the 32nd International Conference on Machine Learning, Lille, Jul 6-11, 2015: 448-456.
[14] He K M, Zhang X Y, Ren S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[C]//LNCS 8691: Proceedings of the 2014 European Conference on Computer Vision. Cham: Springer, 2014: 346-361.
[15] Yang M K, Yu K, Zhang C, et al. DenseASPP for semantic segmentation in street scenes[C]//Proceedings of the 2018 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2018: 3684-3692.
[16] Chollet F. Xception: deep learning with depthwise separable convolutions[C]//Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2017: 1800-1808.
[17] Luong T, Pham H, Manning C D. Effective approaches to attention-based neural machine translation[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2015: 1412-1421.
[18] Abraham N, Khan N M. A novel focal Tversky loss function with improved attention U-net for lesion segmentation[C]//Proceedings of the IEEE 16th International Symposium on Biomedical Imaging. Piscataway: IEEE, 2019: 683-687.
[19] Chung H, Ko H, Jeon S J. Automatic lung segmentation with juxta-pleural nodule identification using active contour model and Bayesian approach[J]. IEEE Journal of Translational Engineering in Health and Medicine, 2018, 6: 1800513.
[20] Geng L, Zhang S Q, Tong J, et al. Lung segmentation method with dilated convolution based on VGG-16 network[J]. Com-puter Assisted Surgery, 2019, 24: 27-33.
[21] Chen L C, Papandreou G, Schroff F, et al. Rethinking atrous convolution for semantic image segmentation[J]. arXiv:1706. 05587, 2017.
[22] Oktay O, Schlemper J, Le Folgoc L, et al. Attention U-net: learning where to look for the pancreas[J]. arXiv:1804.03999, 2018.
[23] Gu Z W, Cheng J, Fu H Z, et al. CE-Net: context encoder network for 2D medical image segmentation[J]. IEEE Tran-sactions on Medical Imaging, 2019, 30(10): 2281-2292. |