[1] DHASMANA A, RAZA S, JAHAN R, et al. Chapter 19-high-throughput virtual screening (HTVS) of natural compounds and exploration of their biomolecular mechanisms: an in silico approach[M]//New Look to Phytomedicine. New York: Academic Press, 2019: 523-548.
[2] VARTIKA T M, MAZUMDER R, CHANDRA J, et al. Small molecule drug design[M]. New York: Elsevier Science Inc., 2019.
[3] KIRKPATRICK P, ELLIS C. Chemical space[J]. Nature, 2004, 432: 823.
[4] GORGULLA C, BOESZOERMENYI A, WANG ZF, et al. An open-source drug discovery platform enables ultra-large virtual screens[J]. Nature, 2020, 580: 663-668.
[5] LYU J, WANG S, BALIUS T E, et al. Ultra-large library docking for discovering new chemotypes[J]. Nature, 2019, 566: 224-229.
[6] ERTL P. Cheminformatics analysis of organic substituents: identification of the most common substituents, calculation of substituent properties, and automatic identification of drug-like bioisosteric groups[J]. Journal of Chemical Information and Computer Sciences, 2003, 43: 374-380.
[7] IRWIN J J, SHOICHET B K. ZINC—a free database of commercially available compounds for virtual screening[J]. Journal of Chemical Information and Modeling, 2005, 45: 177-182.
[8] ERLANSON D A. Introduction to fragment-based drug discovery[J]. Topics in Current Chemistry, 2012, 317: 1-32.
[9] ZHAVORONKOV A, IVANENKOV Y A, ALIPER A, et al. Deep learning enables rapid identification of potent DDR1 kinase inhibitors[J]. Nature Biotechnology, 2019, 37: 1038-1040.
[10] OLSON O T. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading[J]. Journal of Computational Chemistry, 2010, 31: 455-461.
[11] CARMONA S R, GARCIA D A, FOLOPPE A, et al. rDock: a fast, versatile and opensource program for docking ligands to proteins and nucleic acids[J]. PLoS Computational Biology, 2014, 10: e1003571.
[12] ELLINGSON S R, SMITH J C, BAUDRY J. VinaMPI: facilitating multiple receptor high-throughput virtual docking on high-performance computers[J]. Journal of Computational Chemistry, 2013, 34: 2212-2221.
[13] VETRIVEL D A. POAP: a GNU parallel based multithreaded pipeline of Open Babel and AutoDock suite for boosted high throughput virtual screening[J]. Computational Biology and Chemistry, 2018, 74: 39-48.
[14] BOHACEK R S, MCMARTIN C, GUIDA W C. The art and practice of structure-based drug design: a molecular modeling perspective[J]. Medicinal Research Reviews, 1996, 16: 3-50.
[15] LI Z H, ZHANG J, WANG Y J, et al. DDGrid: a grid with massive drug virtual-screening support[J]. Computer Engineering & Science, 2009, 31(S1): 312-314.
李祖华, 张军, 王永剑, 等. DDGrid: 一种大规模药物虚拟筛选网格[J]. 计算机工程与科学, 2009, 31(S1): 312-314.
[16] PENG S L, ZHANG X Y, YANG S Y, et al. mD3DOCKxb: an ultra-scalable CPU-MIC coordinated virtual screening framework[C]//Proceedings of the 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, Madrid, May 14-17, 2017. Washington: IEEE Computer Society, 2017: 671-676.
[17] YANG X J, YONG D, HU Q F. Progress and challenges in high performance computer technology[J]. Journal of Computer Science and Technology, 2006, 21: 674-681.
[18] WANG Z, SUN H Y, YAO X J, et al. Comprehensive evaluation of ten docking programs on a diverse set of protein- ligand complexes: prediction accuracy of sampling power and scoring power[J]. Physical Chemistry Chemical Physics, 2016, 18: 12964-12975.
[19] MARTINS D S, VASQUEZ L S, TILLACK A F, et al. Accelerating AutoDock4 with GPUs and gradient-based local search[J]. Journal of Chemical Theory and Computation, 2021, 17(2): 1060-1073.
[20] JIN Z M, DU X Y, XU Y C, et al. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors[J]. Nature, 2020, 582: 289-293.
[21] MORRIS G M, HUEY R, LINDSTROM W, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility[J]. Journal of Computational Chemistry, 2009, 30: 2785-2791.
[22] GAO Y, YAN L M, HUANG Y C, et al. Structure of the RNA-dependent RNA polymerase from COVID-19 virus[J]. Science, 2020, 368: 779-782.
[23] ALHOSSARY A, HANDOKO S D, MU Y G, et al. Fast, accurate, and reliable molecular docking with QuickVina 2[J]. Bioinformatics, 2015, 31: 2214-2216. |