[1] YANG Y, YU J X, GAO H, et al. Mining most frequently changing component in evolving graphs[J]. World Wide Web, 2014, 17(3): 351-376.
[2] GURUKAR S, RANU S, RAVINDRAN B. Commit: a scalable approach to mining communication motifs from dynamic networks[C]//Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, Melbourne, May 31-Jun 4, 2015. New York: ACM, 2015: 475-489.
[3] MA S, HU R, WANG L, et al. Fast computation of dense temporal subgraphs[C]//Proceedings of the 2017 IEEE 33rd International Conference on Data Engineering, San Diego, Apr 19-22, 2017. Washington: IEEE Computer Society, 2017: 361-372.
[4] WU H, CHENG J, LU Y, et al. Core decomposition in large temporal graphs[C]//Proceedings of the 2015 IEEE International Conference on Big Data, Santa Clara, Oct 29-Nov 1, 2015. Washington: IEEE Computer Society, 2015: 649-658.
[5] YANG Y, YAN D, WU H, et al. Diversified temporal subgraph pattern mining[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, Aug 13-17, 2016. New York: ACM, 2016: 1965-1974.
[6] WU H, HUANG Y, CHENG J, et al. Reachability and time-based path queries in temporal graphs[C]//Proceedings of the 2016 IEEE 32nd International Conference on Data Engineering, Helsinki, May 16-20, 2016. Washington: IEEE Computer Society, 2016: 145-156.
[7] ROSSETTI G, CAZABET R. Community discovery in dynamic networks: a survey[J]. ACM Computing Surveys, 2018, 51(2): 1-37.
[8] LIN Y R, CHI Y, ZHU S, et al. FacetNet: a framework for analyzing communities and their evolutions in dynamic networks[C]//Proceedings of the 17th International Conference on World Wide Web, Beijing, Apr 21-25, 2008. New York: ACM, 2008: 685-694.
[9] CHEN Z, WILSON K A, JIN Y, et al. Detecting and tracking community dynamics in evolutionary networks[C]//Proceedings of the 2010 IEEE International Conference on Data Mining Workshops, Sydney, Dec 13, 2010. Washington: IEEE Computer Society, 2010: 318-327.
[10] AGARWAL M K, RAMAMRITHAM K, BHIDE M. Real time discovery of dense clusters in highly dynamic graphs: identifying real world events in highly dynamic environments[J]. Proceedings of the VLDB Endowment, 2012, 5(10): 980-991.
[11] QIN H C, LI R H, YUAN Y, et al. Periodic communities mining in temporal networks: concepts and algorithms[C]//Proceedings of the 2019 IEEE 35th International Conference on Data Engineering, Macau, China, Apr 8-11, 2019. Washington: IEEE Computer Society, 2019: 361-372.
[12] ZHANG Q, GUO D, ZHAO X, et al. Seasonal-periodic subgraph mining in temporal networks[C]//Proceedings of the 29th ACM International Conference on Information & Know-ledge Management, Ireland, Oct 19-23, 2020. New York: ACM, 2020: 2309-2312.
[13] SCHANK T, WAGNER D. Finding, counting and listing all triangles in large graphs, an experimental study[C]//LNCS 3503: Proceedings of the 2005 International Workshop on Experimental and Efficient Algorithms, Santorini Island, May 10-13, 2005. Berlin, Heidelberg: Springer, 2005: 606-609.
[14] HUANG X, CHENG H, QIN L, et al. Querying K-truss community in large and dynamic graphs[C]//Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data, Snowbird, Jun 22-27, 2014. New York: ACM, 2014: 1311-1322.
[15] WANG J, CHENG J. Truss decomposition in massive networks[J]. Proceedings of the VLDB Endowment, 2012, 5(9): 812-823.
[16] ORTMANN M, BRANDES U. Triangle listing algorithms: back from the diversion[C]//Proceedings of the 16th Workshop on Algorithm Engineering and Experiments, Portland, Jan 5, 2014. Philadelphia: SIAM, 2014: 1-8.
[17] SCHANK T. Algorithmic aspects of triangle-based network analysis[D]. Karlsruhe: University Karlsruhe, 2007.
[18] LATAPY M. Main-memory triangle computations for very large (sparse (power-law)) graphs[J]. Theoretical Computer Science, 2008, 407: 458-473.
[19] ITAI A, RODEH M. Finding a minimum circuit in a graph[J]. SIAM Journal on Computing, 1978, 7(4): 413-423.
[20] LI R H, SU J, QIN L, et al. Persistent community search in temporal networks[C]//Proceedings of the 2018 IEEE 34th International Conference on Data Engineering, Paris, Apr 16-19, 2018. Washington: IEEE Computer Society, 2018: 797-808.
|