计算机科学与探索 ›› 2023, Vol. 17 ›› Issue (8): 1814-1832.DOI: 10.3778/j.issn.1673-9418.2211069
冯晗,伊华伟,李晓会,李锐
出版日期:
2023-08-01
发布日期:
2023-08-01
FENG Han, YI Huawei, LI Xiaohui, LI Rui
Online:
2023-08-01
Published:
2023-08-01
摘要: 推荐系统需要大规模地提取相关用户的历史数据信息作为预测模型的训练集,用户提供的数据量越大、越具体,个人信息越容易被推断出来,致使个人隐私的泄露,从而使用户对服务提供商的信任程度降低,不再向系统提供相关数据,导致系统推荐精度降低甚至较难完成推荐。因此,如何能在对用户隐私进行保护的前提下,获取用户信息进行准确性高的有效推荐已成为当前的一个研究热点。首先,对隐私保护技术进行概述,主要包括差分隐私技术、同态加密技术、联邦学习技术和安全多方计算技术,并对这几种常用的隐私保护技术进行了比较;然后,从平衡隐私注入和推荐精度之间的关系角度出发介绍客户端、服务器端和客户-服务器端所采用的隐私保护技术,系统阐述了国内外推荐系统隐私保护的研究成果,并在此基础上进行总结、对比和分析;接下来,对比基于差分隐私技术的推荐算法的实验效果,并分析相应技术存在的不足;最后,对基于隐私保护的推荐系统的未来发展方向提出相应的建议和展望。
冯晗, 伊华伟, 李晓会, 李锐. 推荐系统的隐私保护研究综述[J]. 计算机科学与探索, 2023, 17(8): 1814-1832.
FENG Han, YI Huawei, LI Xiaohui, LI Rui. Review of Privacy-Preserving Research in Recommendation Systems[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(8): 1814-1832.
[1] 王娜, 任婷. 移动社交网站中的信息过载与个性化推荐机制研究[J]. 情报杂志, 2015, 34(8): 190-194. WANG N, REN T. Information overload and personalized recommendations mechanism in the mobile social network-ing sites[J]. Journal of Intelligence, 2015, 34(8): 190-194. [2] 代宝, 续杨晓雪, 罗蕊. 社交媒体用户信息过载的影响因素及其后果[J]. 现代情报, 2020, 40(1): 152-158. DAI B, XUE Y X X, LUO R. Review on the antecedents and consequences of social media users’ information overload[J]. Modern Information, 2020, 40(1): 152-158. [3] 孟祥武, 纪威宇, 张玉洁. 大数据环境下的推荐系统[J]. 北京邮电大学学报, 2015, 38(2): 1-15. MENG X W, JI W Y, ZHANG Y J. A survey of recommendation systems in big data[J]. Journal of Beijing University of Posts and Telecommunications, 2015, 38(2): 1-15. [4] 赵俊逸, 庄福振, 敖翔, 等. 协同过滤推荐系统综述[J]. 信息安全学报, 2021, 6(5): 17-34. ZHAO J Y, ZHUANG F Z, AO X, et al. Survey of collaborative filtering recommender systems[J]. Journal of Cyber Security, 2021, 6(5): 17-34. [5] CAO K, GUO J, MENG G, et al. Points-of-interest recom-mendation algorithm based on LBSN in edge computing environment[J]. IEEE Access, 2020, 8: 47973-47983. [6] 王岩, 张杰, 许合利. 结合用户兴趣和改进的协同过滤推荐算法[J]. 小型微型计算机系统, 2020, 41(8): 1665-1669. WANG Y, ZHANG J, XU H L. Combining user interests with improved collaborative filtering recommendation algorithm[J]. Journal of Chinese Computer Systems, 2020, 41(8): 1665-1669. [7] 张玉洁, 董政, 孟祥武. 个性化广告推荐系统及其应用研究[J]. 计算机学报, 2021, 44(3): 531-563. ZHANG Y J, DONG Z, MENG X W. Research on personalized advertising recommendation systems and their applications[J]. Chinese Journal of Computers, 2021, 44(3): 531-563. [8] ZHAO K Z, ZHANG Y, YIN H Z, et al. Discovering sub-sequence patterns for next POI recommendation[C]//Proc-eedings of the 29th International Joint Conference on Artificial Intelligence, Yokohama, Jan 7-15, 2020: 3216-3222. [9] 闫桂勋, 刘蓓, 程浩, 等. 数据共享安全框架研究[J]. 信息安全研究, 2019, 5(4): 309-317. YAN G X, LIU B, CHENG H, et al. Research on data sharing security framework[J]. Journal of Information Security Research, 2019, 5(4): 309-317. [10] CALANDRINO J, KILZER A, NARAYANAN A, et al. You might also like: privacy risks of collaborative filtering [C]//Proceedings of the 2011 IEEE Symposium on Security and Privacy, Oakland, May 22-25, 2011. Piscataway: IEEE, 2011: 231-246. [11] BINJUBIER M, AHMED A A, ISMAIL M A B, et al. Comprehensive survey on big data privacy protection[J]. IEEE Access, 2020, 8: 20067-20079. [12] KENTHAPADI K, MIRONOV I, THAKURTA A G. Privacy- preserving data mining in industry[C]//Proceedings of the 12th ACM International Conference on Web Search and Data Mining, Melbourne, Feb 11-15, 2019. New York: ACM, 2019: 840-841. [13] RENDLE S, KRICHENE W, ZHANG L, et al. Neural collaborative filtering vs matrix factorization revisited[C]//Proceedings of the 14th ACM Conference on Recomm-ender Systems, Brazil, Sep 22-26, 2020. New York: ACM, 2020: 240-248. [14] 曹珍富, 董晓蕾, 周俊, 等. 大数据安全与隐私保护研究进展[J]. 计算机研究与发展, 2016, 53(10): 2137-2151. CAO Z F, DONG X L, ZHOU J, et al. Research advances on big data security and privacy preserving[J]. Journal of Computer Research and Development, 2016, 53(10): 2137-2151. [15] 周俊, 董晓蕾, 曹珍富. 推荐系统的隐私保护研究进展[J]. 计算机研究与发展, 2019, 56(10): 2033-2048. ZHOU J, DONG X L, CAO Z F. Research progress of privacy protection in recommendation system[J]. Journal of Computer Research and Development, 2019, 56(10): 2033-2048. [16] 谭作文, 张连福. 机器学习隐私保护研究综述[J]. 软件学报, 2020, 31(7): 2127-2156. TAN Z W, ZHANG L F. A survey of privacy protection in machine learning[J]. Journal of Software, 2020, 31(7): 2127-2156. [17] MCSHERRY F, MIRONOV I. Differentially private recom-mender systems: building privacy into the netflix prize contenders[C]//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Paris, Jun 28-Jul 1, 2009. New York: ACM, 2009: 627-636. [18] CANNY J. Collaborative filtering with privacy[C]//Proce-edings of the 2002 IEEE Symposium on Security and Privacy, Washington, May 12-15, 2002. Washington: IEEE Computer Society, 2002: 45-57. [19] CHEN C C, LI L, WU B Z, et al. Secure social recomm-endation based on secret sharing[J]. arXiv:2002.02088, 2020. [20] AMMAD-UD-DIN M, IVANNIKOVA E, KHAN S A, et al. Federated collaborative filtering for privacy-preserving pers-onalized recommendation system[J]. arXiv:1901.09888, 2019. [21] DWORK C, MCSHERRY F, NISSIM K, et al. Calibrating noise to sensitivity in private data analysis[C]//LNSC 3876: Proceedings of the 21st International Symposium on Comp-uter and Information Sciences, Istanbul, Nov 1-3, 2006. Berlin, Heidelberg: Springer, 2006: 265-284. [22] 张啸剑, 孟小峰. 面向数据发布和分析的差分隐私保护[J]. 计算机学报, 2014, 37(4): 927-949. ZHANG X J, MENG X F. Differential privacy in data publication and analysis[J]. Chinese Journal of Computers, 2014, 37(4): 927-949. [23] 冯登国, 张敏, 叶宇桐. 基于差分隐私模型的位置轨迹发布技术研究[J]. 电子与信息学报, 2020, 42(1): 74-88. FENG D G, ZHANG M, YE Y T. Research on differ-entially private trajectory data publishing[J]. Journal of Electronics & Information Technology, 2020, 42(1): 74-88. [24] YE Q Q, HU H B, MENG X F, et al. PrivKV: key-value data collection with local differential privacy[C]//Proce-edings of the 2019 IEEE Symposium on Security and Privacy, May 19-23, 2019. Piscataway: IEEE, 2019: 317-331. [25] DWORK C. A firm foundation for private data analysis[J]. Communications of the ACM, 2011, 54(1): 86-95. [26] MCSHERRY F, TALWAR K. Mechanism design via differ-ential privacy[C]//Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer Science, Provi-dence, Oct 21-23, 2007. Piscataway: IEEE, 2007: 94-103. [27] DWORK C, ROTH A. The algorithmic foundations of differential privacy[J]. Foundations and Trends? in Theo-retical Computer Science, 2014, 9(3): 211-407. [28] TANG Q, WANG J. Privacy-preserving context-aware reco-mmender systems: analysis and new solutions[C]//LNCS 9327: Proceedings of the 20th European Symposium on Research in Computer Security, Vienna, Sep 21-25, 2015. Cham: Springer, 2015: 101-119. [29] LIU A, ZHENG Y K, LI Z L, et al. Efficient secure simi-larity computation on encrypted trajectory data[C]//Proc-eedings of the 31st International Conference on Data Eng-ineering, Seoul, Apr 13-17, 2015. Washington: IEEE Comp-uter Society, 2015: 66-77. [30] GENTRY G. A full homomorphic encryption scheme[D]. Stanford University, 2009. [31] 段淑敏, 殷守林, 张燕丽, 等. 新的同态加密方法-基于Paillier和RSA密码体制的代理重加密[J]. 微型机与应用, 2016, 35(7): 6-8. DUAN S M, YIN S L, ZHANG Y L, et al. A new homomorphic encryption-proxy re-encryption based on Pail-lier and RSA[J]. Microcomputer & Its Applications, 2016, 35(7): 6-8. [32] 张敏情, 李天雪, 狄富强, 等. 基于Paillier同态公钥加密系统的可逆信息隐藏算法[J]. 郑州大学学报(理学版), 2018, 50(1): 8-14. ZHANG M Q, LI T X, DI F Q, et al. Reversible data hiding algorithm based on Paillier homomorphic public key encryption system[J]. Journal of Zhengzhou University(Natural Science Edition), 2018, 50(1): 8-14. [33] 刁一晴, 叶阿勇, 张娇美, 等. 基于群签名和同态加密的联盟链双重隐私保护方法[J]. 计算机研究与发展, 2022, 59(1): 172-181. DIAO Y Q, YE A Y, ZHANG J M, et al. A dual privacy protection method based on group signature and homo-morphic encryption for alliance blockchain[J]. Journal of Computer Research and Development, 2022, 59(1): 172-181. [34] YAO A C. Protocols for secure computations[C]//Proce-edings of the 23rd Annual Symposium on Foundations of Computer Science, Chicago, Nov 3-5, 1982. Washington: IEEE Computer Society, 1982: 160-164. [35] GOLDREICH O, MICALI S, WIGDERSON A, et al. How to play any mental game or a completeness theorem for protocols with honest majority[C]//Proceedings of the 19th Annual ACM Symposium on Theory of Computing, Jan 1, 1987. New York: ACM, 1987: 218-228. [36] 刘艺璇, 陈红, 刘宇涵, 等. 联邦学习中的隐私保护技术[J]. 软件学报, 2022, 33(3): 1057-1092. LIU Y X, CHEN H, LIU Y H, et al. Privacy-preserving techniques in federated learning[J]. Journal of Software, 2022, 33(3): 1057-1092. [37] 石聪聪, 高先周, 黄秀丽, 等. 联邦学习隐私模型发布综述[J]. 南京信息工程大学学报, 2022, 14(2): 127-136. SHI C C, GAO X Z, HUANG X L, et al. Survey on private model publishing for federated learning[J]. Journal of Nanjing University of Information Science and Technology, 2022, 14(2): 127-136. [38] 李凤华, 李晖, 贾焰, 等. 隐私计算研究范畴及发展趋势[J]. 通信学报, 2016, 37(4): 1-11. LI F H, LI H, JIA Y, et al. Privacy computing: concept, connotation and its research trend[J]. Journal on Comm-unications, 2016, 37(4): 1-11. [39] KAIROUZ P, MCMAHAN H B, AVENT B, et al. Advances and open problems in federated learning[J]. arXiv:1912.04977, 2019. [40] SAI P K, SSTYEN K, MEHRYAR M, et al. SCAFFOLD: stochastic controlled averaging for federated learning[J]. arXiv:1910.06378, 2019. [41] 汤凌韬, 王迪, 张鲁飞, 等. 基于安全多方计算和差分隐私的联邦学习方案[J]. 计算机科学, 2022, 49(9): 297-305. TANG L T, WANG D, ZHANG L F, et al. Federated learning scheme based on secure multi-party computation and differential Privacy[J]. Computer Science, 2022, 49(9): 297-305. [42] MCMAHAN H B, MORRE E, RAMAGE D, et al. Comm-unication-efficient learning of deep networks from decen-tralized data[J]. arXiv:1602.05629, 2016. [43] MACHANAVAJJHALA A, KOROLOVA A, SARMA A D. Personalized social recommendations: accurate or private [J]. Proceedings of the VLDB Endowment, 2011, 4(7): 440-450. [44] GUO T L, LUO J Z, DONG K, et al. Differentially private graph-link analysis based social recommendation[J]. Infor-mation Sciences, 2018, 463: 214-226. [45] WANG H Z, ZHAO Q, WU Q Y, et al. Global and local differential privacy for collaborative bandits[C]//Proce-edings of the 14th ACM Conference on Recommender Syst-ems, Sep 22-26, 2020. New York: ACM, 2020: 150-159. [46] ZHOU P, ZHOU Y, WU D, et al. Differentially private online learning for cloud-based video recommendation with multimedia big data in social networks[J]. IEEE Trans-actions on Multimedia, 2016, 18(6): 1217-1229. [47] BOUTET A, DE MOOR F, FREY D, et al. Collaborative filtering under a Sybil attack: similarity metrics do matter![C]//Proceedings of the 48th Annual IEEE/IFIP Interna-tional Conference on Dependable Systems and Networks, Luxembourg, Jun 25-28, 2018. Washington: IEEE Computer Society, 2018: 466-477. [48] YAN S, PAN S, ZHU W T, et al. DynaEgo: privacy-preserving collaborative filtering recommender system based on social-aware differential privacy[C]//LNCS 9977: Proce-edings of the 18th International Conference on Information and Communications Security, Singapore, Nov 29-Dec 2, 2016. Cham: Springer, 2016: 347-357. [49] LIN L J, TIAN Y C, LIU Y. A blockchain-based privacy-preserving recommendation mechanism[C]//Proceedings of the 2021 IEEE 5th International Conference on Cryptogr-aphy, Security and Privacy, Zhuhai, Jan 8-10, 2021. Pisca-taway: IEEE, 2021: 74-78. [50] 王永, 尹恩民, 冉珣. 基于BC系数聚类的差分隐私保护推荐算法[J]. 北京邮电大学学报, 2021, 44(2): 81-88. WANG Y, YIN E M, RAN X. Differential privacy-preserving recommendation algorithm based on Bhatta-charyya coefficient clustering[J]. Journal of Beijing Univ-ersity of Posts and Telecommunications, 2021, 44(2): 81-88. [51] 王永, 尹恩民, 冉珣, 等. 满足差分隐私保护的矩阵分解推荐算法[J]. 电子科技大学学报, 2021, 50(3): 405-413. WANG Y, YIN E M, RAN X, et al. Matrix factorization recommendation algorithm for differential privacy prote-ction[J]. Journal of University of Electronic Science and Technology of China, 2021, 50(3): 405-413. [52] 王利娥, 李小聪, 刘红翼. 融合知识图谱和差分隐私的新闻推荐方法[J]. 计算机应用, 2022, 42(5): 1339-1346. WANG L E, LI X C, LIU H Y. News recommendation method with knowledge graph and differential privacy[J]. Journal of Computer Applications, 2022, 42(5): 1339-1346. [53] 耿秀丽, 王著鑫. 考虑用户兴趣分析的差分隐私方案推荐[J]. 计算机应用研究, 2022, 39(2): 474-478. GENG X L, WANG Z X. Recommendation of differential privacy scheme considering user interest analysis[J]. Appli-cation Research of Computers, 2022, 39(2): 474-478. [54] ANDRES M E, BORDENABE N E, CHATZIKOKOL-AKIS K, et al. Geo-indistinguishability: differential privacy for location-based systems[C]//Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications Security, Berlin, Nov 4-8, 2013. New York: ACM, 2013: 901-914. [55] GUERRAOUI R, KERMARREC A M, PATRA R, et al. D2P: distance-based differential privacy in recommenders[J]. VLDB Endowment, 2015, 8(8): 862-873. [56] SHEN Y L, JIN H X. Epicrec: towards practical diffe-rentially private framework for personalized recommen-dation[C]//Proceedings of the 2016 ACM SIGSAC Confere-nce on Computer and Communications Security, Vienna, Oct 24-28, 2016. New York: ACM, 2016: 180-191. [57] LI Y, LIU S, WANG J, et al. A local-clustering-based pers-onalized differential privacy framework for user-based colla-borative filtering[C]//LNCS 10177: Proceedings of the 22nd International Conference on Database Systems for Adva-nced Applications, Suzhou, Mar 27-30, 2017. Cham: Sprin-ger, 2017: 543-558. [58] MENG X Y, WANG S H, SHU K, et al. Personalized privacy-preserving social recommendation[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence and the 30th Innovative Applications of Artificial Intelligence Conference and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence, New York, Feb 2-7, 2018. Menlo Park: AAAI, 2018: 3796-3803. [59] 沈鑫娣, 翟东君, 张得天, 等. 基于LSH的隐私保护POI推荐算法[J]. 计算机工程, 2019, 45(1): 96-102. SHEN X D, ZHAI D J, ZHANG D T, et al. privacy preserving POI recommendation algorithm based on LSH[J]. Computer Engineering, 2019, 45(1): 96-102. [60] 潘峰, 刘文超, 杨晓元, 等. 基于同态加密的隐私保护推荐算法[J]. 郑州大学学报(理学版), 2020, 52(3): 62-67. PAN F, LIU W C, YANG X Y, et al. Privacy-preserving recommender algorithm based on homomorphic encryption[J]. Journal of Zhengzhou University (Natural Science Edition), 2020, 52(3): 62-67. [61] BEIGI G, MOSALLANEZHAD A, GUO R C, et al. Privacy-aware recommendation with private-attribute prote-ction using adversarial learning[C]//Proceedings of the 13th International Conference on Web Search and Data Mining, Houston, Feb 3-7, 2020. New York: ACM, 2020: 34-42. [62] YI J W, WU F Z, ZHU B, et al. UA-FedRec: untargeted attack on federated news recommendation[C]//Proceedings of the 28th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, Aug 14-18, 2022. New York: ACM, 2022. [63] 张润莲, 张瑞, 武小年, 等. 基于混合相似度和差分隐私的协同过滤推荐算法[J]. 计算机应用研究, 2021, 38(8): 2334- 2339. ZHANG R L, ZHANG R, WU X N, et al. Collaborative filtering recommendation algorithm based on mixed simi-larity and differential privacy[J]. Application Research of Computers, 2021, 38(8): 2334-2339. [64] SELVARAJ S, SADASIVAM G S, GOUTHAM D T, et al. Privacy preserving bloom recommender system[C]//Proce-edings of the 2021 International Conference on Computer Communication and Informatics, Coimbatore, Jan 27-29, 2021. Piscataway: IEEE, 2021: 1-6. [65] HU M, WU D, WU R, et al. RAP: a light-weight privacy-preserving framework for recommender systems[J]. IEEE Transactions on Services Computing, 2021, 15(5): 2969-2981. [66] WU C H, WU F Z, C Y, et al. FedGNN: federated graph neural network for privacy-preserving recommendation[J]. arXiv:2102.04925, 2021. [67] ZHANG S J, YIN H Z, CHEN T, et al. Graph embedding for recommendation against attribute inference attacks[C]//Proceedings of the Web Conference 2021, Ljubljana, Apr 19-23, 2021. New York: ACM, 2021: 3002-3014. [68] LIU B Y, GUO Y, CHEN X Q. PFA: privacy-preserving federated adaptation for effective model personalization[C]//Proceedings of the Web Conference 2021, Ljubljana, Apr 19-23, 2021. New York: ACM, 2021: 923-934. [69] HORIN A B, TASSA T. Privacy preserving collaborative filtering by distributed mediation[C]//Proceedings of the 15th ACM Conference on Recommender Systems, Amster-dam, Sep 20-21, 2021. New York: ACM, 2021: 332-341. [70] HUO Y F, CHEN B L, TANG J, et al. Privacy-preserving point-of-interest recommendation based on geographical and social influence[J]. Information Sciences, 2021, 543(3): 202-218. [71] BHARSTI S, MONDAL M R H, PODDER P, et al. Federated learning: applications, challenges and future directions[J]. International Journal of Hybrid Intelligent Systems, 2022, 18(1/2): 19-35. [72] JAGTAP R N, SONALI P. Generating private recommen-dation system using multiple homomorphic encryption scheme[J]. International Journal on Recent and Innovation Trends in Computing and Communication, 2015, 3(7): 4690-4694. [73] FRIEDMAN A, BERKOVSKY S, KAAFAR M A. A differential privacy framework for matrix factorization recommender systems[J]. User Modeling and User-Adapted Interaction, 2016, 26(5): 425-458. [74] LIU X, LIU A, ZHANG X, et al. When differential privacy meets randomized perturbation: a hybrid approach for privacy-preserving recommender system[C]//LNCS 10177: Proceedings of the 22nd International Conference on Data-base Systems for Advanced Applications, Suzhou, Mar 27-30, 2017. Cham: Springer, 2017: 576-591. [75] ZHANG F, LEE V E, CHOO K K R. Jo-DPMF: diffe-rentially private matrix factorization learning through joint optimization[J]. Information Sciences, 2018, 467: 271-281. [76] SHIN H, KIM S, SHIN J, et al. Privacy enhanced matrix factorization for recommendation with local differential privacy[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 30(9): 1770-1782. [77] JIANG J Y, LI C T, LIN S D. Towards a more reliable privacy-preserving recommender system[J]. Information Scie-nces, 2019, 40(4): 439-445. [78] 马彪, 李千目. 基于信息差分保护的邻域推荐方法[J]. 江苏大学学报(自然科学版), 2019, 40(4): 439-445. MA B, LI Q M. Neighborhood recommendation method based on information differential protection[J]. Journal of Jiangsu University (Natural Science Edition), 2019, 40(4): 439-445. [79] LIN Y J, REN P J, CHEN Z M, et al. Meta matrix factorization for federated rating predictions[C]//Proce-edings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, Jul 25-30, 2020. New York: ACM, 2020: 981-990. [80] QI T, WU F, WU C, et al. FedRec: privacy-preserving news recommendation with federated learning[J]. arXiv:2003.09592, 2020. [81] 彭春春, 陈燕俐, 荀艳梅. 支持本地化差分隐私保护的k-modes聚类方法[J]. 计算机科学, 2021, 48(2): 105-113. PENG C C, CHEN Y L, XUN Y M. k-modes clustering guaranteeing local differential privacy[J]. Computer Science, 2021, 48(2): 105-113. [82] 郑孝遥, 罗永龙, 汪祥舜, 等. 基于位置服务的分布式差分隐私推荐方法研究[J]. 电子学报, 2021, 49(1): 99-110. ZHENG X Y, LUO Y L, WANG X S, et al. Research on location-based distributed differential privacy recommenda-tion method[J]. Acta Electronica Sinica, 2021, 49(1): 99-110. [83] 崔炜荣, 徐龙华, 杜承烈, 等. 推荐系统中的隐私保护矩阵分解算法研究[J]. 计算机应用与软件, 2021, 38(5): 316-322. CUI W R, XU L H, DU C L, et al. Privacy-preserving matrix factorization algorithm in recommender system[J]. Computer Applications and Software, 2021, 38(5): 316-322. [84] CHAI D, WANG L Y, CHEN K, et al. Secure federated matrix factorization[J]. IEEE Intelligent Systems, 2021, 36(5): 11-20. [85] MINTO L, HALLER M, LIVSHITS B, et al. Stronger privacy for federated collaborative filtering with implicit feedback[C]//Proceedings of the 15th ACM Conference on Recommender Systems, Amsterdam, Sep 27-Oct 1, 2021. New York: ACM, 2021: 342-350. [86] BAO T, XU L, ZHU L H, et al. Successive point-of-interest recommendation with personalized local differential privacy[J]. IEEE Transactions on Vehicular Technology, 2021: 66371-66386. [87] GE Z Q, LIU X Y, LI Q, et al. PrivItem2Vec: a privacy-preserving algorithm for top-N recommendation[J]. Intern-ational Journal of Distributed Sensor Networks, 2021, 17(12): 1-3. [88] QIN Y J, LI M, ZHU J. Privacy-preserving federated lear-ning framework in multimedia courses recommendation[J]. Wireless Networks, 2022, 8(8): 6178-6186. [89] JIE Z Y, CHEN S H, LAI J Q, et al. Personalized federated recommendation system with historical parameter clustering[J]. Journal of Ambient Intelligence and Humanized Comp-uting, 2023, 14: 10555-10565. [90] IMRAN M, YIN H, CHEN T, et al. ReFRS: resource-efficient federated recommender system for dynamic and diversified user preferences[J]. ACM Transactions on Infor-mation Systems, 2022, 41(3): 1-30. [91] 项亮. 推荐系统实践[M]. 北京: 人民邮电出版社, 2012: 23-34. XIANG L. Recommended system practices[M]. Beijing: The People’s Posts and Telecommunications Press, 2012: 23-34. [92] BOBADILLA J, ORTEGA F, HERNANDO A, et al. Recom-mender systems survey[J]. Knowledge-Based Systems, 2013, 46: 109-132. [93] WANG N, XIAO X, YANG Y, et al. PrivSuper: a superset-first approach to frequent item-set mining under differential privacy[C]//Proceedings of the 2017 IEEE 33rd Interna-tional Conference on Data Engineering, San Diego, Apr 19-22, 2017. Washington: IEEE Computer Society, 2017: 809-820. [94] 朱郁筱, 吕琳媛. 推荐系统评价指标综述[J]. 电子科技大学学报, 2012, 41(2): 163-175. ZHU Y X, LV L Y. Evaluation metrics for recommender systems[J]. Journal of University of Electronic Science and Technology of China, 2012, 41(2): 163-175. [95] ZHU T, LI G, REN Y, et al. Differentially private matrix factorization[J]. arXiv:1505.01419, 2015. [96] ZHU X, SUN Y. Differential privacy for collaborative filtering recommender algorithm[C]//Proceedings of the 2016 ACM International Workshop on Security and Privacy Analytics, New Orleans, Mar 11, 2016. New York: ACM, 2016: 9-16. [97] CHEN Z L, WANG Y, ZHANG S, et al. Differentially private user-based collaborative filtering recommendation based on k-means clustering[J]. Expert Systems with Appli-cation, 2021, 168(4): 114366. [98] ZHU T, LI G, REN Y, et al. Differential privacy for neighborhood-based collaborative filtering[C]//Proceedings of the 2013 IEEE/ACM International Conference on Adva-nces in Social Networks Analysis and Mining, Niagara, Aug 25-28, 2013. New York: ACM, 2013: 752-759. [99] SARWAR B, KARYPIS G, KONSTAN J, et al. Item-based collaborative filtering recommendation algorithms[C]//Proce edings of the 10th International Conference on World Wide Web, Hong Kong, China, May 1-5, 2001. New York: ACM, 2001: 285-295. [100]邓爱林, 朱扬勇, 施伯乐. 基于项目评分预测的协同过滤推荐算法[J]. 软件学报, 2003, 14(9): 1621-1628. DENG A L, ZHU Y Y, SHI B L. A collaborative filtering recommendation algorithm based on item rating prediction[J]. Journal of Software, 2003, 14(9): 1621-1628. |
[1] | 崔焕庆, 宋玮情, 杨峻铸. 知识水波图卷积网络推荐模型[J]. 计算机科学与探索, 2023, 17(9): 2209-2218. |
[2] | 张程东, 王绍卿, 刘玉芳, 郑顺, 孙福振. 采用新型元路径的异构图表示学习方法[J]. 计算机科学与探索, 2023, 17(7): 1680-1689. |
[3] | 邬锦琛, 杨兴耀, 于炯, 李梓杨, 黄擅杭, 孙鑫杰. 双通道异构图神经网络序列推荐算法[J]. 计算机科学与探索, 2023, 17(6): 1473-1486. |
[4] | 赵晔辉, 柳林, 王海龙, 韩海燕, 裴冬梅. 知识图谱推荐系统研究综述[J]. 计算机科学与探索, 2023, 17(4): 771-791. |
[5] | 沈铁孙龙, 付晓东, 岳昆, 刘骊, 刘利军. 融合人格特征的概率推荐模型[J]. 计算机科学与探索, 2023, 17(1): 251-262. |
[6] | 武美, 丁怡彤, 赵建立. 改进的增量式动静结合协同过滤方法[J]. 计算机科学与探索, 2022, 16(9): 2089-2095. |
[7] | 陈江美, 张文德. 基于位置社交网络的兴趣点推荐系统研究综述[J]. 计算机科学与探索, 2022, 16(7): 1462-1478. |
[8] | 田静, 杜云明, 李帅, 刘义. Paillier加密的隐私保护群智感知任务发布算法[J]. 计算机科学与探索, 2022, 16(6): 1327-1333. |
[9] | 郭晓旺, 夏鸿斌, 刘渊. 融合知识图谱与图卷积网络的混合推荐模型[J]. 计算机科学与探索, 2022, 16(6): 1343-1353. |
[10] | 武森, 董雅贤, 魏桂英, 高晓楠. 面向稀疏数据的协同过滤用户相似度计算研究[J]. 计算机科学与探索, 2022, 16(5): 1043-1052. |
[11] | 韩刚, 吕英泽, 罗维, 王嘉乾. 重大疫情患者隐私数据保护方案研究[J]. 计算机科学与探索, 2022, 16(2): 359-371. |
[12] | 李新春, 詹德川. 使用多分类器的分布式模型重用技术[J]. 计算机科学与探索, 2022, 16(10): 2310-2319. |
[13] | 吴静, 谢辉, 姜火文. 图神经网络推荐系统综述[J]. 计算机科学与探索, 2022, 16(10): 2249-2263. |
[14] | 李想, 杨兴耀, 于炯, 钱育蓉, 郑捷. 基于知识图谱卷积网络的双端推荐算法[J]. 计算机科学与探索, 2022, 16(1): 176-184. |
[15] | 武家伟, 孙艳春. 融合知识图谱和深度学习方法的问诊推荐系统[J]. 计算机科学与探索, 2021, 15(8): 1432-1440. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||