计算机科学与探索 ›› 2023, Vol. 17 ›› Issue (8): 1793-1813.DOI: 10.3778/j.issn.1673-9418.2212063
延照耀,丁苍峰,马乐荣,曹璐,游浩
出版日期:
2023-08-01
发布日期:
2023-08-01
YAN Zhaoyao, DING Cangfeng, MA Lerong, CAO Lu, YOU Hao
Online:
2023-08-01
Published:
2023-08-01
摘要: 随着图神经网络的发展,基于图神经网络的知识图谱嵌入方法日益受到研究人员的关注。相比传统的方法,它可以更好地处理实体的多样性和复杂性,并捕捉实体的多重特征和复杂关系,从而提高知识图谱的表示能力和应用价值。首先概述知识图谱的发展历程,梳理知识图谱和图神经网络的基本概念;其次着重讨论基于图卷积、图神经、图注意力以及图自编码器的知识图谱嵌入的设计思路和算法框架;然后描述图神经网络的知识图谱嵌入在链接预测、实体对齐、知识推理以及知识图谱补全等任务中的性能,同时补充图神经网络在常识性知识图谱中的一些研究;最后进行全面性的总结,并针对知识图谱嵌入存在的一些问题和挑战,勾画未来研究方向。
延照耀, 丁苍峰, 马乐荣, 曹璐, 游浩. 面向图神经网络的知识图谱嵌入研究进展[J]. 计算机科学与探索, 2023, 17(8): 1793-1813.
YAN Zhaoyao, DING Cangfeng, MA Lerong, CAO Lu, YOU Hao. Advances in Knowledge Graph Embedding Based on Graph Neural Networks[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(8): 1793-1813.
[1] SINGHAL A. Introducing the knowledge graph: things, not strings[J]. Official Google Blog, 2012, 5: 16. [2] 刘知远, 孙茂松, 林衍凯, 等. 知识表示学习研究进展[J]. 计算机研究与发展, 2016, 53(2): 247-261. LIU Z Y, SUN M S, LIN Y K, et al. Knowledge representation learning: a review[J]. Journal of Computer Research and Development, 2016, 53(2): 247-261. [3] MIKOLOV T, SUTSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their compositionality[C]//Advances in Neural Information Processing Systems 26, Lake Tahoe, Dec 5-8, 2013: 3111-3119. [4] 杨东华, 何涛, 王宏志, 等. 面向知识图谱的图嵌入学习研究进展[J]. 软件学报, 2022, 33(9): 3370-3390. YANG D H, HE T, WANG H Z, et al. Survey on know-ledge graph embedding learning[J]. Journal of Software, 2022, 33(9): 3370-3390. [5] SCARSELLI F, GORI M, TSOI A C, et al. The graph neural network model[J]. IEEE Transactions on Neural Networks, 2008, 20(1): 61-80. [6] BORDES A, WESTON J, USUNIER N. Open question answering with weakly supervised embedding models[C]//LNCS 8724: Proceedings of the 2014 European Conference on Machine Learning and Knowledge Discovery in Database, Nancy, Sep 15-19, 2014. Cham: Springer, 2014: 165-180. [7] DAIBER J, JAKOB M, HOKAMP C, et al. Improving efficiency and accuracy in multilingual entity extraction[C]//Proceedings of the 9th International Conference on Semantic Systems, Graz, Sep 4-6, 2013. New York: ACM, 2013: 121-124. [8] HOFFMANN R, ZHANG C, LING X, et al. Knowledge-based weak supervision for information extraction of overlapping relations[C]//Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, Portland, Jun 19-24, 2011. Stroudsburg: ACL, 2011: 541-550. [9] GUO Q, ZHUANG F, QIN C, et al. A survey on knowledge graph-based recommender systems[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(8): 3549-3568. [10] NICKEL M, TRESP V, KRIEGEL H P. A three-way model for collective learning on multi-relational data[C]//Proceedings of the 28th International Conference on Machine Learning, Bellevue, Jun 28-Jul 2, 2011. Madison: Omnipress, 2011: 809-816. [11] YANG B, YIH S W, HE X, et al. Embedding entities and relations for learning and inference in knowledge bases[C]//Proceedings of the 3rd International Conference on Learning Representations, San Diego, May 7-9, 2015: 1-12. [12] TROUILLON T, WELBL J, RIEDEL S, et al. Complex embeddings for simple link prediction[C]//Proceedings of the 33rd International Conference on Machine Learning, New York, Jun 19-24, 2016: 2071-2080. [13] NICKEL M, ROSASCO L, POGGIO T. Holographic embeddings of knowledge graphs[C]//Proceedings of the 30th AAAI Conference on Artificial Intelligence, Phoenix Arizonam, Feb 12-17, 2016: 1955-1961. [14] BORDES A, USUNIER N, GARCIA-DURAN A, et al. Translating embeddings for modeling multi-relational data[C]//Advances in Neural Information Processing Systems 26, Lake Tahoe, Dec 5-8, 2013: 2787-2795. [15] SUN Z, DENG Z H, NIE J Y, et al. Rotate: knowledge graph embedding by relational rotation in complex space[J]. arXiv:1902.10197, 2019. [16] DETTMERS T, MINERVINI P, STENETORP P, et al. Convolutional 2D knowledge graph embeddings[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence, the 30th Innovative Applications of Artificial Intelligence, and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence, New Orleans, Feb 2-7, 2018. Menlo Park, AAAI, 2018: 1811-1818. [17] 吴博, 梁循, 张树森, 等. 图神经网络前沿进展与应用[J]. 计算机学报, 2022, 45(1): 35-68. WU B, LIANG X, ZHANG S S, et al. Advances and applications in graph neural network[J]. Chinese Journal of Computers, 2022, 45(1): 35-68. [18] KHAMSI M A, KIRK W A. An introduction to metric spaces and fixed point theory[M]. New York: John Wiley & Sons, 2011. [19] GILMER J, SCHOENHOLZ S S, RILEY P F, et al. Neural message passing for quantum chemistry[C]//Proceedings of the 34th International Conference on Machine Learning, Sydney, Aug 6-11, 2017: 1263-1272. [20] BENGIO Y, COURVILLE A, VINCENT P. Representation learning: a review and new perspectives[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8): 1798-1828. [21] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. [22] SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks[C]//LNCS 10843: Proceedings of the 15th International Conference the Semantic Web, Heraklion, Jun 3-7, 2018. Cham: Springer, 2018: 593-607. [23] YE R, LI X, FANG Y, et al. A vectorized relational graph convolutional network for multi-relational network alignment[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence, Macao, China, Aug 10-16, 2019: 4135-4141. [24] CAI L, YAN B, MAI G, et al. TransGCN: coupling transformation assumptions with graph convolutional networks for link prediction[C]//Proceedings of the 10th International Conference on Knowledge Capture, Marina Del Rey, Nov 19-21, 2019. New York: ACM, 2019: 131-138. [25] VASHISHTH S, SANYAL S, NITIN V, et al. Composition-based multi-relational graph convolutional networks[J]. arXiv: 1911.03082, 2019. [26] YU D, YANG Y, ZHANG R, et al. Knowledge embedding based graph convolutional network[C]//Proceedings of the Web Conference 2021, Ljubljana, Apr 19-23, 2021. New York: ACM, 2021: 1619-1628. [27] SHANG C, TANG Y, HUANG J, et al. End-to-end structure-aware convolutional networks for knowledge base completion[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence, the 31st Innovative Applications of Artificial Intelligence Conference, the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, Honolulu, Jan 27-Feb 1, 2019. Menlo Park: AAAI, 2019: 3060-3067. [28] YAN Y, LIU L, BAN Y, et al. Dynamic knowledge graph alignment[C]//Proceedings of the 35th AAAI Conference on Artificial Intelligence, the 33rd Conference on Innovative Applications of Artificial Intelligence, the 11th Symposium on Educational Advances in Artificial Intelligence, Feb 2-9, 2021. Menlo Park: AAAI, 2021: 4564-4572. [29] WANG Z, REN Z, HE C, et al. Robust embedding with multi-level structures for link prediction[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence, Macao, China, Aug 10-16, 2019: 5240-5246. [30] WANG S, WEI X, DOS SANTOS C N, et al. Mixed-curvature multi-relational graph neural network for knowledge graph completion[C]//Proceedings of the Web Conference 2021, Ljubljana, Apr 19-23, 2021: 1761-1771. [31] RICHARDSON M, DOMINGOS P. Markov logic networks[J]. Machine Learning, 2006, 62(1): 107-136. [32] ZHANG Y, CHEN X, YANG Y, et al. Efficient probabilistic logic reasoning with graph neural networks[C]//Proceedings of the 8th International Conference on Learning Representations, Addis Ababa, Apr 26-30, 2020: 1-20. [33] TERU K K, DENIS E G, HAMILTON W L. Inductive relation prediction by subgraph reasoning[C]//Proceedings of the 37th International Conference on Machine Learning, Jul 13-18, 2020: 9448-9457. [34] LIU S, GRAU B, HORROCKS I, et al. INDIGO: GNN-based inductive knowledge graph completion using pair-wise encoding[C]//Advances in Neural Information Processing Systems 34, Dec 6-14, 2021: 2034-2045. [35] CAO Y, LIU Z, LI C, et al. Multi-channel graph neural network for entity alignment[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Jul 28-Aug 2, 2019. Stroudsburg: ACL, 2019: 1452-1461. [36] WANG Z, YANG J, YE X. Knowledge graph alignment with entity-pair embedding[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, Nov 16-20, 2020. Stroudsburg: ACL, 2020: 1672-1680. [37] MAO X, WANG W, XU H, et al. MRAEA: an efficient and robust entity alignment approach for cross-lingual knowledge graph[C]//Proceedings of the 13th International Conference on Web Search and Data Mining, Houston, Feb 3-7, 2020. New York: ACM, 2020: 420-428. [38] NATHANI D, CHAUHAN J, SHARMA C, et al. Learning attention-based embeddings for relation prediction in know-ledge graphs[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Jul 28-Aug 2, 2019. Stroudsburg: ACL, 2019: 4710-4723. [39] CHEN M, ZHANG Y, KOU X, et al. r-GAT: relational graph attention network for multi-relational graphs[J]. arXiv:2109. 05922, 2021. [40] GUO L, WANG W, SUN Z, et al. Decentralized knowledge graph representation learning[J]. arXiv:2010.08114, 2020. [41] LIU X, TAN H, CHEN Q, et al. RAGAT: relation aware graph attention network for knowledge graph completion[J]. IEEE Access, 2021, 9: 20840-20849. [42] ZHANG Z, ZHUANG F, ZHU H, et al. Relational graph neural network with hierarchical attention for knowledge graph completion[C]//Proceedings of the 2020 AAAI Conference on Artificial Intelligence, New York, Feb 7-12, 2020: 9612-9619. [43] LI Z, LIU H, ZHANG Z, et al. Learning knowledge graph embedding with heterogeneous relation attention networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(8): 3961-3973. [44] ZHAO X, JIA Y, LI A, et al. Target relational attention-oriented knowledge graph reasoning[J]. Neurocomputing, 2021, 461: 577-586. [45] JI K, HUI B, LUO G. Graph attention networks with local structure awareness for knowledge graph completion[J]. IEEE Access, 2020, 8: 224860-224870. [46] SUN Z, WANG C, HU W, et al. Knowledge graph alignment network with gated multi-hop neighborhood aggregation[C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence, the 32nd Innovative Applications of Artificial Intelligence Conference, the 10th AAAI Symposium on Educational Advances in Artificial Intelligence, New York, Feb 7-12, 2020. Menlo Park: AAAI, 2020: 222-229. [47] ZHANG Z, HUANG J, TAN Q. Association rules enhanced knowledge graph attention network[J]. Knowledge-Based Systems, 2022, 239: 108038. [48] DAI G, WANG X, ZOU X, et al. MRGAT: multi-relational graph attention network for knowledge graph completion[J]. Neural Networks, 2022, 154: 234-245. [49] BALDI P. Autoencoders, unsupervised learning, and deep architectures[C]//Proceedings of the 2011 ICML Workshop on Unsupervised and Transfer Learning, Bellevue, Jul 2, 2011: 37-50. [50] RUMELHART D E, HINTON G E, WILLIAMS R J. Learning internal representations by error propagation[M]. Cambridge: MIT Press, 1985. [51] KINGMA D P, WELLING M. Auto-encoding variational Bayes[J]. arXiv:1312.6114, 2013. [52] TSCHANNEN M, BACHEM O, LUCIC M. Recent advances in autoencoder-based representation learning[J]. arXiv:1812. 05069, 2018. [53] SALHA G, LIMNIOS S, HENNEQUIN R, et al. Gravity-inspired graph autoencoders for directed link prediction[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management, Beijing, Nov 3-7, 2019. New York: ACM, 2019: 589-598. [54] ZHANG S, ZHANG Z, ZHUANG F, et al. Compressing knowledge graph embedding with relational graph auto-encoder[C]//Proceedings of the 2020 IEEE 10th International Conference on Electronics Information and Emergency Communication, Beijing, Jul 17-19, 2020. Piscataway: IEEE, 2020: 366-370. [55] JANG E, GU S, POOLE B. Categorical reparameterization with gumbel-softmax[J]. arXiv:1611.01144, 2016. [56] YANG K. GCN-VAE for knowledge graph completion[EB/OL]. [2022-09-14]. http://snap.stanford.edu/class/cs224w-2019/project/26425038.pdf. [57] HU K R, LIU H, ZHAN C J, et al. Learning knowledge graph embedding with a bi-directional relation encoding network and a convolutional autoencoder decoding network[J]. Neural Computing and Applications, 2021, 33(17): 11157-11173. [58] TOUTANOVA K, CHEN D. Observed versus latent features for knowledge base and text inference[C]//Proceedings of the 3rd Workshop on Continuous Vector Space Models and Their Compositionality, Beijing, Jul 26-31, 2015. Stroudsburg: ACL, 2015: 57-66. [59] SUN Z, HU W, LI C. Cross-lingual entity alignment via joint attribute-preserving embedding[C]//LNCS 10587: Proceedings of the 16th International Semantic Web Conference, Vienna, Oct 21-25, 2017. Cham: Springer, 2017: 628-644. [60] XIONG W, HOANG T, WANG W Y. Deeppath: a reinforcement learning method for knowledge graph reasoning[J]. arXiv:1707.06690, 2017. [61] SUCHANEK F M, KASNECI G, WEIKUM G. YAGO: a core of semantic knowledge[C]//Proceedings of the 16th International Conference on World Wide Web, Banff, May 8-12, 2007. New York: ACM, 2007: 697-706. [62] NIE K, ZENG K, MENG Q. Knowledge reasoning method for military decision support knowledge graph mixing rule and graph neural networks learning together[C]//Proceedings of the 2020 Chinese Automation Congress, Shanghai, Nov 6-8, 2020. Piscataway: IEEE, 2020: 4013-4018. [63] ZITNIK M, AGRAWAL M, LESKOVEC J. Modeling polypharmacy side effects with graph convolutional networks[J]. Bioinformatics, 2018, 34(13): i457-i466. [64] CUI Z, HENRICKSON K, KE R, et al. Traffic graph convolutional recurrent neural network: a deep learning framework for network-scale traffic learning and forecasting[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21(11): 4883-4894. [65] CHEN Z, WANG Y, ZHAO B, et al. Knowledge graph completion: a review[J]. IEEE Access, 2020, 8: 192435-192456. [66] LIN Y, LIU Z, SUN M, et al. Learning entity and relation embeddings for knowledge graph completion[C]//BONET B, KOENIG S. Proceedings of the 29th AAAI Conference on Artificial Intelligence, Austin, Jan 25-30, 2015. Menlo Park: AAAI, 2015: 2181-2187. [67] SHEN Y, DING N, ZHENG H T, et al. Modeling relation paths for knowledge graph completion[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 33(11): 3607-3617. [68] ZHANG Y, ZHENG W, WANG H, et al. Joint entity structural and attribute information for knowledge graph completion[C]//Proceedings of the 2021 International Conference on High Performance Computing and Communication, Xiamen, Dec 3-5, 2021: 264-269. [69] JUNG J, JUNG J, KANG U. Learning to walk across time for interpretable temporal knowledge graph completion[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, New York, Aug 14-18, 2021. New York: ACM, 2021: 786-795. [70] GARCíA-DURáN A, DUMAN?I? S, NIEPERT M. Learning sequence encoders for temporal knowledge graph completion[J]. arXiv:1809.03202, 2018. [71] REITER R. On closed world data bases[M]. San Mateo: Morgan Kaufmann, 1981. [72] ILIEVSKI F, SZEKELY P, ZHANG B. CSKG: the commonsense knowledge graph[C]//LNCS 12731: Proceedings of the 18th International Conference the Semantic Web, Jun 6-10, 2021. Cham: Springer, 2021: 680-696. [73] SPEER R, CHIN J, HAVASI C. ConceptNet 5.5: an open multilingual graph of general knowledge[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence, San Francisco, Feb 4-9, 2017. Menlo Park: AAAI, 2017: 4444-4451. [74] SAP M, LEBRAS R, ALLAWAY E, et al. ATOMIC: an atlas of machine commonsense for if-then reasoning[J]. arXiv:1811.00146, 2018. [75] VRANDE?I? D, KR?TZSCH M. Wikidata: a free collaborative knowledgebase[J]. Communications of the ACM, 2014, 57(10): 78-85. [76] MILLER G A. WordNet: a lexical database for English[J]. Communications of the ACM, 1995, 38(11): 39-41. [77] SCHULER K K. VerbNet: a broad-coverage, comprehensive verb lexicon[D]. Philadelphia: University of Pennsylvania, 2005. [78] BAKER C F, FILLMORE C J, LOWE J B. The Berkeley FrameNet project[C]//Proceedings of the 36th Annual Meeting of the Association for Computational Linguistics and 17th International Conference on Computational Linguistics, Montreal, 1998: 86-90. [79] KRISHNA R, ZHU Y, GROTH O, et al. Visual genome: connecting language and vision using crowdsourced dense image annotations[J]. International Journal of Computer Vision, 2017, 123(1): 32-73. [80] DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]//Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, Jun 20-25, 2009. Washington: IEEE Computer Society, 2009: 248-255. [81] YASUNAGA M, REN H, BOSSELUT A, et al. QA-GNN: reasoning with language models and knowledge graphs for question answering[J]. arXiv: 2104. 06378, 2021. [82] SHWARTZ V, WEST P, BRAS R L, et al. Unsupervised commonsense question answering with self-talk[J]. arXiv: 2004.05483, 2020. [83] BOSSELUT A, RASHKIN H, SAP M, et al. COMET: commonsense transformers for automatic knowledge graph construction[J]. arXiv:1906.05317, 2019. [84] PALATUCCI M, POMERLEAU D, HINTON G E, et al. Zero-shot learning with semantic output codes[C]//Advances in Neural Information Processing Systems 22, Vancouver, Dec 7-10, 2009: 1410-1418. [85] WANG X, YE Y, GUPTA A. Zero-shot recognition via semantic embeddings and knowledge graphs[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 6857-6866. [86] KAMPFFMEYER M, CHEN Y, LIANG X, et al. Rethinking knowledge graph propagation for zero-shot learning[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 11479-11488. [87] NAYAK N V, BACH S H. Zero-shot learning with common sense knowledge graphs[J]. arXiv:2006.10713, 2020. [88] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems 30, Long Beach, Dec 4-9, 2017: 5998-6008. [89] ROJAS-CARULLA M, SCH?LKOPF B, TURNER R, et al. Invariant models for causal transfer learning[J]. The Journal of Machine Learning Research, 2018, 19(1): 1309-1342. [90] WU Q, ZHANG H, YAN J, et al. Handling distribution shifts on graphs: an invariance perspective[J]. arXiv:2202. 02466, 2022. [91] ARJOVSKY M, BOTTOU L, GULRAJANI I, et al. Invariant risk minimization[J]. arXiv:1907.02893, 2019. [92] LI H, WANG X, ZHANG Z, et al. OOD-GNN: out-of-distribution generalized graph neural network[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(7): 7328-7340. |
[1] | 钱付兰, 王文学, 郑文杰, 陈洁, 赵姝. 基于层次保留的知识图谱嵌入链路预测方法[J]. 计算机科学与探索, 2023, 17(9): 2174-2183. |
[2] | 崔焕庆, 宋玮情, 杨峻铸. 知识水波图卷积网络推荐模型[J]. 计算机科学与探索, 2023, 17(9): 2209-2218. |
[3] | 陈娜, 黄金诚, 李平. 结合对比学习的图神经网络防御方法[J]. 计算机科学与探索, 2023, 17(8): 1949-1960. |
[4] | 邬锦琛, 杨兴耀, 于炯, 李梓杨, 黄擅杭, 孙鑫杰. 双通道异构图神经网络序列推荐算法[J]. 计算机科学与探索, 2023, 17(6): 1473-1486. |
[5] | 李智杰, 韩瑞瑞, 李昌华, 张颉, 石昊琦. 融合预训练模型和注意力的实体关系抽取方法[J]. 计算机科学与探索, 2023, 17(6): 1453-1462. |
[6] | 彭晏飞, 张睿思, 王瑞华, 郭家隆. 少样本知识图谱补全技术研究[J]. 计算机科学与探索, 2023, 17(6): 1268-1284. |
[7] | 王雪岑, 张昱, 赵长宽, 陈默, 于戈. 采用二分网络表示学习的教学交互评价方法[J]. 计算机科学与探索, 2023, 17(6): 1463-1472. |
[8] | 赵晔辉, 柳林, 王海龙, 韩海燕, 裴冬梅. 知识图谱推荐系统研究综述[J]. 计算机科学与探索, 2023, 17(4): 771-791. |
[9] | 韩虎, 郝俊, 张千锟, 孟甜甜. 知识增强的交互注意力方面级情感分析模型[J]. 计算机科学与探索, 2023, 17(3): 709-718. |
[10] | 尹华, 肖石冉, 陈智全, 胡振生, 龙泳潮. 多语义关系嵌入的知识图谱补全方法[J]. 计算机科学与探索, 2023, 17(2): 467-477. |
[11] | 马力, 姚伟凡. 结合关系路径与有向子图推理的链接预测方法[J]. 计算机科学与探索, 2023, 17(2): 478-488. |
[12] | 富坤, 禚佳明, 郭云朋, 李佳宁, 刘琪. 自适应融合邻域聚合和邻域交互的图卷积网络[J]. 计算机科学与探索, 2023, 17(2): 453-466. |
[13] | 孙水发, 李小龙, 李伟生, 雷大江, 李思慧, 杨柳, 吴义熔. 图神经网络应用于知识图谱推理的研究综述[J]. 计算机科学与探索, 2023, 17(1): 27-52. |
[14] | 马涪元, 王英, 李丽娜, 汪洪吉. 融合结构和特征的图层次化池化模型[J]. 计算机科学与探索, 2023, 17(1): 179-186. |
[15] | 高仰, 刘渊. 融合社交关系和知识图谱的推荐算法[J]. 计算机科学与探索, 2023, 17(1): 238-250. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||