计算机科学与探索 ›› 2023, Vol. 17 ›› Issue (8): 1776-1792.DOI: 10.3778/j.issn.1673-9418.2301044
徐光宪,冯春,马飞
出版日期:
2023-08-01
发布日期:
2023-08-01
XU Guangxian, FENG Chun, MA Fei
Online:
2023-08-01
Published:
2023-08-01
摘要: UNet作为卷积神经网络(CNN)中最重要的语义分割框架之一,广泛地应用于医学图像的分类、分割和目标检测等图像处理任务。对UNet的结构原理进行了阐述,并对基于UNet网络及变体模型进行了全面综述,从多个角度对模型算法进行了充分研究与分析,试图建立起各个模型间的演进规律。首先,将UNet变体模型根据其应用的七种医学成像系统的不同而进行分类研究,且将核心构成相似的算法进行了对比描述;其次,对每个模型的原理、优缺点和适用的场景等内容进行分析;再次,对主要UNet变体网络从结构原理、核心组成结构、数据集和评价指标四方面进行总结;最后,结合深度学习的最新进展,客观地描述了UNet网络结构存在的固有不足和解决方案,为未来继续改进提供了方向。同时,对UNet可结合的其他技术演进与应用场景等内容进行详述,进一步展望了基于UNet变体网络未来的发展趋势。
徐光宪, 冯春, 马飞. 基于UNet的医学图像分割综述[J]. 计算机科学与探索, 2023, 17(8): 1776-1792.
XU Guangxian, FENG Chun, MA Fei. Review of Medical Image Segmentation Based on UNet[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(8): 1776-1792.
[1] RONNEBERGER O, FISCHER P, BROX T. U-Net: convo-lutional networks for biomedical image segmentation[C]//LNCS 9351: Proceedings of the 18th International Confere-nce on Medical Image Computing and Computer-Assisted Inter-vention, Munich, Oct 5-9, 2015. Cham: Springer, 2015: 234-241. [2] 张欢, 仇大伟, 冯毅博, 等. U-Net模型改进及其在医学图像分割上的研究综述[J]. 激光与光电子学进展, 2022, 59(2): 55-71. ZHANG H, QIU D W, FENG Y B, et al. Improved U-Net models and its applications in medical image segmentation: a review[J]. Laser and Optoelectronics Progress, 2022, 59(2): 55-71. [3] DU G T, CAO X, LIANG J M, et al. Medical image segmen-tation based on U-Net: a review[J]. Journal of Imaging Scie-nce and Technology, 2020, 64(2): 1-12. [4] VIEDMA I A, ALONSO-CANEIRO D, READ S A, et al. OCT retinal and choroidal layer instance segmentation us-ing mask R-CNN[J]. Sensors, 2022, 22(5): 2016. [5] ZHOU Z W, SIDDIQUEE M M R, TAJBAKHSH N, et al. UNet++: a nested U-Net architecture for medical image segmentation[C]//LNCS 11045: Proceedings of the 4th Int-ernational Workshop on Deep Learning in Medical Image Analysis-and-Multimodal Learning for Clinical Decision Support, Granada, Sep 20, 2018. Cham: Springer, 2018: 3-11. [6] LI X, CHEN H, QI X, et al. H-DenseUNet: hybrid densely connected Unet for liver and tumor segmentation from CT volumes[J]. IEEE Transactions on Medical Imaging, 2018, 37(12): 2663-2674. [7] ZHOU Z, SIDDIQUEE M M R, TAJBAKHSH N, et al. UNet++: redesigning skip connections to exploit multiscale features in image segmentation[J]. IEEE Transactions on Medical Imaging, 2020, 39(6): 1856-1867. [8] HUANG H, LIN L, TONG R, et al. UNet3+: a full-scale connected UNet for medical image segmentation[C]//Pro-ceedings of the 2020 IEEE International Conference on Acoustics, Speech and Signal Processing, Barcelona, May 4-8, 2020. Piscataway: IEEE, 2020: 1055-1059. [9] GAO H, ZENG X, PAN D, et al. Covariance self-attention dual path Unet for rectal tumor segmentation[C]//Procee-dings of the 2021 IEEE International Conference on Robotics and Automation, Xi'an, May 30-Jun 5, 2021. Piscataway: IEEE, 2021: 11162-11168. [10] JIN Q, MENG Z, SUN C, et al. RA-UNet: a hybrid deep attention-aware network to extract liver and tumor in CT scans[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 605132. [11] 邸拴虎, 杨文瀚, 廖苗, 等. 基于RA-Unet的CT图像肝脏肿瘤分割[J]. 仪器仪表学报, 2022, 43(8): 65-72. DI S H, YANG W H, LIAO M, et al. Liver tumor segmen-tation from CT images based on RA-Unet[J]. Chinese Jour-nal of Scientific Instrument, 2022, 43(8): 65-72. [12] CHEN H, QI X, YU L, et al. DCAN: deep contour-aware networks for accurate gland segmentation[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pat-tern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 2487-2496. [13] HE K, LIAN C, ZHANG B, et al. HF-UNet: learning hierar-chically inter-task relevance in multi-task U-Net for accurate prostate segmentation in CT images[J]. IEEE Transactions on Medical Imaging, 2021, 40(8): 2118-2128. [14] YOUSEFI S, SOKOOTI H, ELMAHDY M S, et al. Esopha-geal tumor segmentation in CT images using a dilated dense attention Unet (DDAUnet)[J]. IEEE Access, 2021, 9: 99235-99248. [15] CAI Y T, WANG Y. MA-Unet: an improved version of Unet based on multi-scale and attention mechanism for medical image segmentation[C]//Proceedings of the 2021 3rd Inter-national Conference on Electronics and Communication, Network and Computer Technology, Xiamen, Dec 3-5, 2021. San Francisco: SPIE, 2021: 205-211. [16] 钟经纬. PRA-UNet3+: 全尺度跳跃连接CT肝脏图像分割模型[J]. 软件导刊, 2023, 22(2): 15-20. ZHONG J W. PRA-UNet3+: full-scale connected CT liver image segmentation model[J]. Software Guide, 2023, 22(2): 15-20. [17] CUI W W, WANG Y Q, ZHANG Q N, et al. CTooth: a fully annotated 3D dataset and benchmark for tooth volume seg-mentation on cone beam computed tomography images[C]//LNCS 13458: Proceedings of the 2022 International Confe-rence on Intelligent Robotics and Applications, Harbin, Aug 1-3, 2022. Cham: Springer, 2022: 191-200. [18] LI X, WANG W H, HU X L, et al. Selective kernel networks[C]//Proceedings of the 2019 IEEE Conference on Com-puter Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 510-519. [19] BOURIGAULT E, MCGOWAN D R, MEHRANIAN A, et al. Multimodal PET/CT tumour segmentation and prediction of progression-free survival using a full-scale UNet with attention[C]//LNCS 13209: Proceedings of the Head and Neck Tumor Segmentation and Outcome Prediction, Stras-bourg, Sep 27, 2021. Cham: Springer, 2021: 189-201. [20] SHELHAMER E, LONG J, DaARRELL T. Fully convolu-tional networks for semantic segmentation[J]. IEEE Transa-ctions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651. [21] LI J, LIN X, CHE H, et al. Pancreas segmentation with probabilistic map guided bi-directional recurrent Unet[J]. Phy-sics in Medicine & Biology, 2021, 66: 115010. [22] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Proces-sing Systems 30,?Long?Beach,?Dec?4-9,?2017: 5998-6008. [23] LIU Z, LIN Y T, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Oct 10-17, 2021. Piscataway: IEEE, 2021: 9992-10002. [24] CAO H, WANG Y Y, CHEN J, et al. Swin-Unet: Unet-like pure transformer for medical image segmentation[C]//LNCS 13803: Proceedings of the 17th European Conference on Com-puter Vision, Tel Aviv, Oct 23-27, 2022. Cham: Springer, 2022: 205-218. [25] 赵佳美, 吴迪康, 王志芳. 基于RT-UNet的医学图像分割算法[J]. 无线电工程, 2023, 53(2): 381-386. ZHAO J M, WU D K, WANG Z F. Medical image segmen-tation algorithm based on RT-UNet[J]. Radio Engineering, 2023, 53(2): 381-386. [26] 曹路洋, 李建微. 面向深度学习的胰腺医学图像分割方法研究进展[J]. 小型微型计算机系统, 2022, 43(12): 2591-2604. CAO L Y, LI J W. Research progress on pancreatic medical image segmentation methods based on deep learning[J]. Journal of Chinese Computer Systems, 2022, 43(12): 2591-2064. [27] XIE Y T, ZHANG J P, SHEN C H, et al. CoTr: efficiently bridging CNN and transformer for 3D medical image seg-mentation[C]//LNCS 12903: Proceedings of the 24th Inter-national Conference on Medical Image Computing and Computer Assisted Intervention, Strasbourg, Sep 27-Oct 1, 2021. Cham: Springer, 2021: 171-180. [28] YAN X Y, TANG H, SUN S L, et al. AFTer-UNet: axial fusion transformer Unet for medical image segmentation[C]//Proceedings of the 2022 EEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, Jan 3-8, 2022. Piscataway: IEEE, 2022: 3270-3280. [29] TOUVRON H, CORD M, DOUZE M, et al. Training data-efficient image transformers & distillation through attention[C]//Proceedings of the 38th International Conference on Machine Learning, Jul 18-24, 2021: 10347-10357. [30] GRAHAM B, EL-NOUBY A, TOUVRON H, et al. LeViT: a vision transformer in Convnet??s clothing for faster infere-nce[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Oct 10-17, 2021. Piscataway: IEEE, 2021: 12239-12249. [31] KAKODKAR P, KAkA N, BAIG M N. A comprehensive literature review on the clinical presentation, and manage-ment of the pandemic coronavirus disease 2019 (COVID-19)[J]. Cureus, 2020, 12: e7560. [32] FAN D P, ZHOU T, JI G P, et al. Inf-Net: automatic COVID-19 lung infection segmentation from CT images[J]. IEEE Transactions on Medical Imaging, 2020, 39(8): 2626-2637. [33] MA J, WANG Y, AN X, et al. Toward data-efficient learn-ing: a benchmark for COVID-19 CT lung and infection seg-mentation[J]. Medical Physics, 2021, 48: 1197-1210. [34] SAEEDIZADEH N, MINAEE S, KAFIEH R, et al. COVID TV-Unet: segmenting COVID-19 chest CT images using connectivity imposed Unet[J]. Computer Methods and Programs in Biomedicine Update, 2021, 1: 100007. [35] QIBLAWEY Y, TAHIR A, CHOWDHURY M E H, et al. Detection and severity classification of COVID-19 in CT images using deep learning[J]. Diagnostics, 2021, 11: 1-29. [36] GARCIA-UCEDA JUAREZ A, SELVAN R, SAGHIR Z, et al. A joint 3D UNet-Graph neural network-based method for airway segmentation from chest CTs[C]//LNCS 11861: Proceedings of the 10th International Workshop on Machine Learning in Medical Imaging, Shenzhen, Oct 13, 2019. Cham: Springer, 2019: 583-591. [37] 杨振, 邸拴虎, 赵于前, 等. 基于级联Dense-UNet和图割的肝脏肿瘤自动分割[J]. 电子与信息学报, 2022, 44(5): 1683-1693. YANG Z, DI S H, ZHAO Y Q, et al. Automatic liver tumor segmentation based on cascaded dense-UNet and graph cuts[J]. Journal of Electronics & Information Technology, 2022, 44(5): 1683-1693. [38] KUSHNURE D T, TALBAR S N. MS-UNet: a multi-scale UNet with feature recalibration approach for automatic liver and tumor segmentation in CT images[J]. Computerized Medical Imaging and Graphics, 2021, 89: 101885. [39] I?IN A, DIREKO?LU C, ?AH M. Review of MRI-based brain tumor image segmentation using deep learning methods[J]. Procedia Computer Science, 2016, 102: 317-324. [40] WANG H, ZHU Y, GREEN B, et al. Axial-Deeplab: stand-alone axial-attention for panoptic segmentation[C]//LNCS 12349: Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 108-126. [41] LUU H M, PARK S H. Extending NN-UNet for brain tumor segmentation[C]//LNCS 12963: Proceedings of the 7th Inter-national Workshop on Brainlesion: Glioma, Multiple Scle-rosis, Stroke and Traumatic Brain Injuries, Sep 27, 2021. Cham: Springer, 2022: 173-186. [42] 褚张晴晴, 钟志强, 颜子夜, 等. 基于特征融合与注意力机制的脑肿瘤分割算法[J]. 计算机工程. DOI: 10.19678/j.issn.1000-3428.0066311. CHU Z Q Q, ZHONG Z Q, YAN Z Y, et al. Brain tumor segmentation algorithm based on feature fusion and atten-tion mechanism[J]. Computer Engineering. DOI: 10.19678/j.issn.1000-3428.0066311. [43] NOORI M, BAHRI A, MOHAMMADI K. Attention-guided version of 2D Unet for automatic brain tumor segmentation[C]//Proceedings of the 2019 9th International Conference on Computer and Knowledge Engineering, Mashhad, Oct 24-25, 2019. Piscataway: IEEE, 2019: 269-275. [44] ISLAM M, VIBASHAN V, JOSE V, et al. Brain tumor seg-mentation and survival prediction using 3D attention UNet[C]//LNCS 11992: Proceedings of the 5th International Workshop Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, Shenzhen, Oct 17, 2019. Cham: Springer, 2020: 262-272. [45] THOMAS E, PAWAN S J, KUMAR S, et al. Multi-Res-Attention UNet: a CNN model for the segmentation of focal cortical dysplasia lesions from magnetic resonance images[J]. IEEE Journal of Biomedical and Health Informatics, 2021, 25(5): 1724-1734 . [46] BIJAY DEV K M, JOGI P S, NIYAS S, et al. Automatic detection and localization of focal cortical dysplasia lesions in MRI using fully convolutional neural network[J]. Biome-dical Signal Processing and Control, 2019, 52: 218-225. [47] IBTEHAZ N, RAHMAN M S. MultiResUNet: rethinking the U-Net architecture for multimodal biomedical image segmentation[J]. Neural Netw, 2020, 121: 74-87. [48] 张士强, 石磊, 程晓东. 脑肿瘤分割算法研究[J]. 中国生物医学工程学报, 2022, 41(3): 290-300. ZHANG S Q, SHI L, CHENG X D. Research on brain glioma segmentation algorithm[J]. Chinese Journal of Biomedical Engineering, 2022, 41(3): 290-300. [49] 侯奕辰, 彭辉, 谢俊章, 等. 改进Unet++在脑肿瘤图像分割的研究[J]. 计算机工程与设计, 2022, 43(6): 1725-1731. HOU Y C, PENG H, XIE J Z, et al. Research on segmenta-tion of brain tumor image based on improved Unet++[J]. Computer Engineering and Design, 2022, 43(6): 1725-1731. [50] MCKINLEY R, MEIER R, WIEST R. Ensembles of densely-connected CNNs with label-uncertainty for brain tumor segmentation[C]//LNCS 11384: Proceedings of the 4th International Workshop Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, Granada, Sep 16, 2018. Cham: Springer, 2018: 456-465. [51] QI C R, SU H, MO K, et al. PointNet: deep learning on point sets for 3D classification and segmentation[C]//Pro-ceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Wash-ington: IEEE Computer Society, 2017: 77-85. [52] QI C R, YI L, SU H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[C]//Advan-ces in Neural Information Processing Systems?30, Long Beach, Dec 4-9, 2017: 5099-5108. [53] HO N V, NGUYEN T, DIEP G H, et al. Point-UNet: a con-text-aware point-based neural network for volumetric seg-mentation[C]//LNCS 12901: Proceedings of the 24th Intern-ational Conference on Medical Image Computing and Com-puter Assisted Intervention, Strasbourg, Sep 27-Oct 1, 2021. Cham: Springer, 2021: 644-655. [54] ZHAO T, WU X. Pyramid feature attention network for saliency detection[C]//Proceedings of the 2019 IEEE Confer-ence on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 3085-3094. [55] HU Q Y, YANG B, XIE L H, et al. RandLA-Net: efficient semantic segmentation of large-scale point clouds[C]//Pro-ceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 11105-11114. [56] ZHOU Y, HUANG W, DONG P, et al. D-Unet: a dimension-fusion U shape network for chronic stroke lesion segmenta-tion[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, 18(3): 940-950. [57] WANG W X, CHEN C, DING M, et al. TransBTS: multi-modal brain tumor segmentation using transformer[C]//LNCS 12901: Proceedings of the 24th International Conference on Medical Image Computing and Computer Assisted Inter-vention, Strasbourg, Sep 27-Oct 1, 2021. Cham: Springer, 2021: 109-119. [58] JIA Q R, SHU H. BiTr-Unet: a CNN-transformer combined network for MRI brain tumor segmentation[C]//LNCS 12963: Proceedings of the 7th International Workshop Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, Sep 27, 2021. Cham: Springer, 2022: 3-14. [59] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//LNCS 11211: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 3-19. [60] LACHINOV D A, VASILIEV E, TURLAPOV V. Glioma segmentation with cascaded UNet[C]//LNCS 11384: Pro-ceedings of the 4th International Workshop Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, Granada, Sep 16, 2018. Cham: Springer, 2019: 189-198. [61] HATAMIZADEH A, TANG Y C, NATH V, et al. UNETR: transformers for 3D medical image segmentation[C]//Pro-ceedings of the 2022 IEEE/CVF Winter Conference on App-lications of Computer Vision, Waikoloa, Jan 3-8, 2022. Pis-cataway: IEEE, 2022: 1748-1758. [62] TANG Y C, YANG D, LI W Q, et al. Self-supervised pre-training of swin transformers for 3D medical image analysis[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, Jun 18-24, 2022. Piscataway: IEEE, 2022: 20698-20708. [63] WANG H Y, XIE S A, LIN L F, et al. Mixed transformer U-Net for medical image segmentation[C]//Proceedings of the 2022 IEEE International Conference on Acoustics, Speech and Signal Processing, Singapore, May 23-27, 2022. Pisca-taway: IEEE, 2022: 2390-2394. [64] WANG T C, XU X W, XIONG J J, et al. ICA-UNet: ICA inspired statistical UNet for real-time 3D cardiac cine MRI segmentation[C]//LNCS 12266: Proceedings of the 23rd Inter-national Conference on Medical Image Computing and Computer Assisted Intervention, Lima, Oct 4-8, 2020. Cham: Springer, 2020: 447-457. [65] WANG X Y, YANG S, TANG M X, et al. SK-UBet: an improved U-Net model with selective kernel for the seg-mentation of multi-sequence cardiac MR[C]//LNCS 12009: Proceedings of the 10th International Workshop on Statis-tical Atlases and Computational Models of the Heart, Shen-zhen, Oct 13, 2019. Cham: Springer, 2020: 246-253. [66] QAMAR S, AHMAD P, SHEN L L. Hi-Net: hyperdense inception 3D UNet for brain tumor segmentation[C]//LNCS 12659: Proceedings of the 6th International Work-shop on Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, Lima, Oct 4, 2020. Cham: Springer, 2021: 50-57. [67] YAMAZAKI K, RATHOUR V S, LE T H N. Invertible residual network with regularization for effective volumetric segmentation[C]//Proceedings of the Medical Imaging 2021: Image Processing. San Francisco: SPIE, 2022: 269-275. [68] AGHALARI M, AGHAGOLZADEH A, EZOJI M. Brain tumor image segmentation via asymmetric/symmetric UNet based on two-pathway-residual blocks[J]. Biomedical Signal Processing and Control, 2021, 69: 102841. [69] LI Z Q, PAN H, ZHU Y P, et al. PGD-UNet: a position-guided deformable network[C]//Proceedings of the 2020 International Joint Conference on Neural Networks, Glasgow, Jul 19-24, 2020. Piscataway: IEEE, 2020: 1-8. [70] BALLESTAR L M, VILAPLANA V. MRI brain tumor segmentation and uncertainty estimation using 3D-UNet archi-tectures[C]//LNCS 12658: Proceedings of the 6th Interna-tional Workshop Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, Lima, Oct 4, 2020. Cham: Springer, 2021: 376-390. [71] ZHANG Y, WU J, LIU Y L, et al. MI-UNet: multi-inputs UNet incorporating brain parcellation for stroke lesion seg-mentation from T1-weighted magnetic resonance images[J]. IEEE Journal of Biomedical and Health Informatics, 2021, 25(2): 526-535. [72] YANG H X, SHAN C F, KOLEN A F, et al. Deep Q-network-driven catheter segmentation in 3D US by hybrid constrained semi-supervised learning and dual-Unet[C]//LNCS 12261: Proceedings of the 23rd International Confere-nce on Medical Image Computing and Computer Assisted Intervention, Lima, Oct 4-8, 2020. Cham: Springer, 2020: 646-655. [73] VALANARASU J M J, PATEL V M. UNeXt: MLP-based rapid medical image segmentation network[C]//LNCS 13435: Proceedings of the 25th International Conference on Medi-cal Image Computing and Computer Assisted Intervention, Singapore, Sep 18-22, 2022. Cham: Springer, 2022: 23-33. [74] 周晓松, 赵涓涓. 多尺度监督U-Net甲状腺结节超声图像分割[J]. 太原理工大学学报, 2022, 53(6): 1134-1142. ZHOU X S, ZHAO J J. Multi-scale supervised U-Net ultra-sound image segmentation of thyroid nodule[J]. Journal of Taiyuan University of Technology, 2022, 53(6): 1134-1142. [75] LIU T R, MENG Q J, HUANG J J, et al. Video summariza-tion through reinforcement learning with a 3D spatio-temporal U-Net[J]. IEEE Transactions on Image Processing, 2022, 31: 1573-1586. [76] HU S Y, LEI B Y, WANG S Q, et al. Bidirectional mapping generative adversarial networks for brain MR to PET syn-thesis[J]. IEEE Transactions on Medical Imaging, 2022, 41(1): 145-157. [77] HU S Y, YUAN J P, WANG S Q. Cross-modality synthesis from MRI to PET using adversarial U-Net with different normalization[C]//Proceedings of the 2019 International Conference on Medical Imaging Physics and Engineering, Shenzhen, Nov 22-24, 2019. Piscataway: IEEE, 2019: 1-5. [78] HUANG L, DENOEUX T, TONNELET D, et al. Deep PET/CT fusion with Dempster-Shafer theory for lymphoma seg-mentation[C]//Proceedings of the 12th International Work-shop on Machine Learning in Medical Imaging, Strasbourg, Sep 27, 2021. Cham: Springer, 2021: 30-39. [79] IANTSEN A, VISVIKIS D, HATT M. Squeeze-and-exci-tation normalization for automated delineation of head and neck primary tumors in combined PET and CT images[C]//LNCS 12603: Proceedings of the 1st Challenge Head and Neck Tumor Segmentation, Lima, Oct 4, 2020. Cham: Springer, 2021: 37-43. [80] 梁礼明, 陈鑫, 周珑颂, 等. 基于U-Net多尺度自校准注意力视网膜分割算法[J]. 计算机应用研究, 2023, 40(3): 943-948. LIANG L M, CHEN X, ZHOU L S, et al. Based on U-Net multi-scale self-calibrating attention retinal segmentation algo-rithm[J]. Application Research of Computers, 2023, 40(3): 943-948. [81] 张雷, 张良, 刘刚, 等. 基于改进UNet的视网膜血管分割算法[J]. 微电子学与计算机, 2023, 40(2): 101-109. ZHANG L, ZHANG L, LIU G, et al. Retinal vascular segmentation algorithm based on improved UNet[J]. Micro-electronics & Computer, 2023, 40(2): 101-109. [82] GUO C L, SZEMENYEI M, YI Y G, et al. Dense residual network for retinal vessel segmentation[C]//Proceedings of the 2020 IEEE International Conference on Acoustics, Speech and Signal Processing, Barcelona, May 4-8, 2020. Piscataway: IEEE, 2020: 1374-1378. [83] GUO C L, SZEMENYEI M, YI Y G, et al. SA-UNet: spatial attention U-Net for retinal vessel segmentation[C]//Proceedings of the 25th International Conference on Pattern Recognition, Jan 10-15, 2021. Piscataway: IEEE, 2021: 1236-1242. [84] NI J J, WU J H, TONG J, et al. GC-NeT: global context net-work for medical image segmentation[J]. Computer Methods and Programs in Biomedicine, 2020, 190: 105121. [85] 徐婷宜, 朱家明, 宋枭. 基于改进UNet的视网膜血管分割[J]. 计算机仿真, 2022, 39(11): 323-327. XU T Y, ZHU J M, SONG X. Retinal vascular segme-ntation based on improved Unet[J]. Computer Simulation, 2022, 39(11): 323-327. [86] 蒋晨皓, 马玉良, 祝真滨. 基于PSPNet改进UNet的轻量级视网膜血管分割算法[J]. 传感技术学报, 2022, 35(7): 888-896. JIANG C H, MA Y L, ZHU Z B. Lightweight retinal blood vessels segmentation based on PSPNet improved UNet[J]. Chinese Journal of Sensors and Actuators, 2022, 35(7): 888-896. [87] LV Y, MA H, LI J N, et al. Attention guided U-Net with atrous convolution for accurate retinal vessels segmenta-tion[J]. IEEE Access, 2020, 8: 32826-32839. [88] SATHANANTHAVATHI V, GANESAN I. Encoder enhanced atrous (EEA) Unet architecture for retinal blood vessel seg-mentation[J]. Cognitive Systems Research, 2021, 67: 84-95. [89] WANG Q L, WU B G, ZHU P F, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 11531-11539. [90] GUO C L, SZEMENYEI M, HU Y T, et al. Channel atten-tion residual U-Net for retinal vessel segmentation[C]//Pro-ceedings of the 2021 IEEE International Conference on Acoustics, Speech and Signal Processing, Toronto, Jun 6-11, 2021. Piscataway: IEEE, 2021: 1185-1189. [91] 孙颖, 丁卫平, 黄嘉爽, 等. RCAR-UNet: 基于粗糙通道注意力机制的视网膜血管分割网络[J]. 计算机研究与发展, 2023, 60(4): 947-961. SUN Y, DING W P, HUANG J S, et al. RCAR-UNet: retinal vessels segmentation network based on rough channel attention mechanism[J]. Journal of Computer Research and Development, 2023, 60(4): 947-961. [92] JIN Q G, MENG Z P, PHAM T D, et al. DUNet: a defor-mable network for retinal vessel segmentation[J]. Knowledge- Based Systems, 2019, 178: 149-162. [93] LI L Z, VERMA M, NAKASHIMA Y, et al. IterNet: retinal image segmentation utilizing structural redundancy in vessel networks[C]//Proceedings of the 2020 IEEE Winter Confere-nce on Applications of Computer Vision, Snowmass Village, Mar 1-5, 2020. Piscataway: IEEE, 2020: 3645-3654. [94] 颜玉松, 尹芳洁, 王彩玲. 融合Xception特征提取和坐标注意力机制的血细胞分割[J]. 计算机系统应用, 2023, 32(1): 275-280. YAN Y S, YIN F J, WANG C L. Blood cell segmentation fusing Xception feature extraction and coordinate attention mechanism[J]. Computer Systems & Applications, 2023, 32(1): 275-280. [95] 荣亚琪, 张丽娟, 崔金利, 等. 基于NODE-UNet++和标记分水岭算法的红细胞图像分割[J]. 液晶与显示, 2022, 37(9): 1190-1198. RONG Y Q, ZHANG L J, CUI J L, et al. Red blood cell image segmentation based on NODE-UNet++ and marker watershed[J]. Chinese Journal of Liquid Crystals and Dis-plays, 2022, 37(9): 1190-1198. [96] 范憧憧, 齐苏敏, 孟静, 等. 增强语义分割的网络模型PS-UNet[J]. 曲阜师范大学学报(自然科学版), 2023, 49(1): 56-63. FAN C C, QI S M, MENG J, et al. PS-UNet with enhanced semantic segmentation[J]. Journal of Qufu Normal Univer-sity(Natural Science), 2023, 49(1): 56-63. [97] LOU A G, GUAN S Y, LOEW M H. DC-UNet: rethinking the U-Net architecture with dual channel efficient CNN for medical images segmentation[C]//Proceedings of the Medical Imaging 2021: Image Processing. San Francisco: SPIE, 2021: 758-768. [98] LI M X, CHEN C, LIU X Y, et al. Advanced deep networks for 3D mitochondria instance segmentation[C]//Proceedings of the 19th IEEE International Symposium on Biomedical Imaging, Kolkata, Mar 28-31, 2022. Piscataway: IEEE, 2022: 1-5. [99] TRAN S T, CHENG C H, NGUYEN T T, et al. TMD-Unet: triple-Unet with multi-scale input features and dense skip connection for medical image segmentation[J]. Healthcare, 2021, 9(1): 54. [100] GADOSEY P K, LI Y J, AGYEKUM A E, et al. SD-UNet: stripping down U-Net for segmentation of biomedical images on platforms with low computational budgets[J]. Diagno-stics, 2020, 10(2): 110. [101] ZHU H Q, YAO Q S, XIAO L, et al. You only learn once: universal anatomical landmark detection[C]//LNCS 12905: Proceedings of the 24th International Conference on Medical Image Computing and Computer Assisted Intervention, Stras-bourg, Sep 27-Oct 1, 2021. Cham: Springer, 2021: 85-95. [102] NIU S T, LIU M, LIU Y X, et al. Distant domain transfer learning for medical imaging[J]. IEEE Journal of Biome-dical and Health Informatics, 2021, 25(10): 3784-3793. [103] JI Y F, ZHANG R M, WANG H J, et al. Multi-compound transformer for accurate biomedical image segmentation[C]//LNCS 12901: Proceedings of the 24th International Conference on Medical Image Computing and Computer Assisted Intervention, Strasbourg, Sep 27-Oct 1, 2021. Cham: Springer, 2021: 326-336. [104] SAFAROV S, WHANGBO T K. A-DenseUNet: adaptive densely connected UNet for polyp segmentation in colonos-copy images with atrous convolution[J]. Sensors, 2021, 21(4): 1441. [105] LAN P N, AN N S, HANG D V, et al. NeoUNet: towards accurate colon polyp segmentation and neoplasm detection[C]//LNCS 13018: Proceedings of the 16th International Symposium on Visual Computing, Oct 4-6, 2021. Cham: Springer, 2021: 15-28. [106] LU Y, QIN X J, FAN H Y, et al. WBC-Net: a white blood cell segmentation network based on UNet++ and ResNet[J]. Applied Soft Computing, 2021, 101: 107006. [107] CHO S J, JI S W, HONG J P, et al. Rethinking coarse-to-fine approach in single image deblurring[C]//Proceedings of the 2021 IEEE/CVF International Conference on Com-puter Vision, Montreal, Oct 10-17, 2021. Piscataway: IEEE, 2021: 4621-4630. [108] ZHU C, MEI K, PENG T, et al. Multi-level colonoscopy malignant tissue detection with adversarial CAC-UNet[J]. Neurocomputing, 2021, 438: 165-183. [109] TU Z Z, TALEBI H, ZHANG H, et al. MAXIM: multi-axis MLP for image processing[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, Jun 18-24, 2022. Piscataway: IEEE, 2022: 5759-5770. [110] ZAMIR S W, ARORA A, KHAN S, et al. Multi-stage progressive image restoration[C]//Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Reco-gnition, Jun 19-25, 2021. Piscataway: IEEE, 2021: 14821-14831. [111] LEE D H, LIU J L. End-to-end deep learning of lane detec-tion and path prediction for real-time autonomous driving[J]. Signal, Image and Video Processing, 2023, 17(1): 199-205. [112] HOU Y W, LIU Z Y, ZHANG T, et al. C-UNet: comple-ment Unet for remote sensing road extraction[J]. Sensors, 2021, 21(6): 2153. [113] FAN C M, LIU T J, LIU K H. SUNet: swin transformer UNet for image denoising[C]//Proceedings of the 2022 IEEE International Symposium on Circuits and Systems, Austin, May 27-Jun 1, 2022. Piscataway: IEEE, 2022: 2333-2337. [114] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//LNCS 11211: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 3-19. |
[1] | 王兵, 黄刚, 张兴鹏. 融合卷积特征的清晰边缘检测研究[J]. 计算机科学与探索, 2023, 17(9): 2148-2160. |
[2] | 赵婷婷, 孙威, 陈亚瑞, 王嫄, 杨巨成. 潜在空间中深度强化学习方法研究综述[J]. 计算机科学与探索, 2023, 17(9): 2047-2074. |
[3] | 刘华玲, 陈尚辉, 曹世杰, 朱建亮, 任青青. 基于多模态学习的虚假新闻检测研究[J]. 计算机科学与探索, 2023, 17(9): 2015-2029. |
[4] | 季长清, 王兵兵, 秦静, 汪祖民. 深度特征的实例图像检索算法综述[J]. 计算机科学与探索, 2023, 17(7): 1565-1575. |
[5] | 吴水秀, 罗贤增, 熊键, 钟茂生, 王明文. 知识追踪研究综述[J]. 计算机科学与探索, 2023, 17(7): 1506-1525. |
[6] | 马妍, 古丽米拉·克孜尔别克. 图像语义分割方法在高分辨率遥感影像解译中的研究综述[J]. 计算机科学与探索, 2023, 17(7): 1526-1548. |
[7] | 张如琳, 王海龙, 柳林, 裴冬梅. 音乐自动标注分类方法研究综述[J]. 计算机科学与探索, 2023, 17(6): 1225-1248. |
[8] | 梁宏涛, 刘硕, 杜军威, 胡强, 于旭. 深度学习应用于时序预测研究综述[J]. 计算机科学与探索, 2023, 17(6): 1285-1300. |
[9] | 曹义亲, 饶哲初, 朱志亮, 万穗. 双通道四元数卷积网络去噪方法[J]. 计算机科学与探索, 2023, 17(6): 1359-1372. |
[10] | 曹斯铭, 王晓华, 王弘堃, 曹轶. MSV-Net:面向科学模拟面体混合数据的超分重建方法[J]. 计算机科学与探索, 2023, 17(6): 1321-1328. |
[11] | 刘京, 赵薇, 董泽浩, 王少华, 王余. 融合多尺度自注意力机制的运动想象信号解析[J]. 计算机科学与探索, 2023, 17(6): 1427-1440. |
[12] | 贾天豪, 彭力, 戴菲菲. 引入残差学习与多尺度特征增强的目标检测器[J]. 计算机科学与探索, 2023, 17(5): 1102-1111. |
[13] | 黄涛, 李华, 周桂, 李少波, 王阳. 实例分割方法研究综述[J]. 计算机科学与探索, 2023, 17(4): 810-825. |
[14] | 安胜彪, 郭昱岐, 白 宇, 王腾博. 小样本图像分类研究综述[J]. 计算机科学与探索, 2023, 17(3): 511-532. |
[15] | 焦磊, 云静, 刘利民, 郑博飞, 袁静姝. 封闭域深度学习事件抽取方法研究综述[J]. 计算机科学与探索, 2023, 17(3): 533-548. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||