[1] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[J]. arXiv:1609.02907, 2016.
[2] HU F, ZHU Y, WU S, et al. Hierarchical graph convolutional networks for semi-supervised node classification[J]. arXiv: 1902.06667, 2019.
[3] ABU-EL-HAIJA S, PEROZZI B, KAPOOR A, et al. Mixhop: higher-order graph convolutional architectures via sparsified neighborhood mixing[C]//Proceedings of the 36th International Conference on Machine Learning, Long Beach, Jun 10-15, 2019: 21-29.
[4] LIN G, WANG J, LIAO K, et al. Structure fusion based on graph convolutional networks for node classification in citation networks[J]. Electronics, 2020, 9(3): 432.
[5] XU D, CHENG W, LUO D, et al. Adaptive neural network for node classification in dynamic networks[C]//Proceedings of the 2019 IEEE International Conference on Data Mining, Beijing, Nov 8-11, 2019. Piscataway: IEEE, 2019: 1402-1407.
[6] LI B, PI D. Learning deep neural networks for node classification[J]. Expert Systems with Applications, 2019, 137: 324-334.
[7] LI B, PI D, LIN Y. Learning ladder neural networks for semi-supervised node classification in social network[J]. Expert Systems with Applications, 2021, 165: 113957.
[8] VELIČKOVIĆ P, UCURULL G, CASANOVA A,?et al. Graph attention networks[J]. arXiv:1710.10903, 2017.
[9] WU J, HE J, XU J. DEMO-Net: degree-specific graph neural networks for node and graph classification[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Anchorage, Aug 4-8, 2019. New York: ACM, 2019: 406-415.
[10] WANG X, ZHU M, BO D,?et al. AM-GCN: adaptive multi- channel graph convolutional networks[C]//Proceedings of the 2020 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Jul 6-10, 2020. New York: ACM, 2020: 1243-1253.
[11] BHAGAT S, CORMODE G, MUTHUKRISHNAN S. Node classification in social networks[M]//Social Network Data Analytics. Berlin, Heidelberg: Springer, 2011.
[12] MCPHERSON M, SMITHLOVIN L, COOK J M. Birds of a feather: homophily in social networks[J]. Annual Review of Sociology, 2001, 27(1): 415-444.
[13] RAQUEL U, FRANCISCO C, GUY M, et al. A social network based approach for consensus achievement in multiperson decision making[J]. Information Fusion, 2019, 47: 72-87.
[14] UMIT C, BILAL A. A new direction in social network analysis: online social network analysis problems and applications[J]. Physic: Statistical Mechanics and Its Applications, 2014, 535: 122372.
[15] GETOOR L. Link-based classification[M]//Advanced Methods for Knowledge Discovery from Complex Data. Berlin, Heidelberg: Springer, 2005: 189-207.
[16] BHAGAT S, ROSENBLUM I, CORMODE G. Applying link-based classification to label blogs[C]//LNCS 5439: Proceedings of the 9th Web KDD and 1st SNA-KDD Workshop on Web Mining and Social Network Analysis, San Jose, Aug 12-15, 2007. Berlin, Heidelberg: Springer, 2007: 97-117.
[17] RON M, SHAI S, SHALEV I, et al. Network motifs: simple building blocks of complex networks[J]. Science, 2002, 298(5594): 824-827.
[18] YU J, YIN H, LI J, et al. Self-supervised multi-channel hypergraph convolutional network for social recommendation[C]// Proceedings of the 2021 Web Conference, Ljubljana, Apr 19-23, 2021. New York: ACM, 2021: 413-424.
[19] WANG W, LIU X, JIAO P, et al. A unified weakly supervised framework for community detection and semantic matching[C]//LNCS 10939: Proceedings of the 2018 Pacific-Asia Conference on Knowledge Discovery and Data Mining, Melbourne, Jun 3-6, 2018. Cham: Springer, 2018: 218-230.
[20] MENG Z, LIANG S, BAO H, et al. Co-embedding attributed networks[C]//Proceedings of the 2019 12th ACM International Conference on Web Search and Data Mining, Melbourne, Feb 11-15, 2019. New York: ACM, 2019: 393-401.
[21] DEFFERRARD M, BRESSON X, VANDERGHEYNST P. Convolutional neural networks on graphs with fast localized spectral filtering[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems, Barcelona, Dec 5-10, 2016. Red Hook: Curran Associates, 2016: 3837-3845. |