[1] 蒋弘毅, 王永娟, 康锦煜. 目标检测模型及其优化方法综述[J]. 自动化学报, 2021, 47(6): 1232-1255.
JIANG H Y, WANG Y J, KANG J Y. A survey of object detection models and its optimization methods[J]. Acta Automatica Sinica, 2021, 47(6): 1232-1255.
[2] GIRSHICK R B. Fast R-CNN[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Dec 7-13, 2015. Washington: IEEE Computer Society, 2015: 1440-1448.
[3] HE K, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[J]. IEEE Transactions on Pattern Analysis and Machine Intel-ligence, 2020, 42(2): 386-397.
[4] SINGH B, NAJIBI M, DAVIS L S. SNIPER: efficient multi-scale training[C]//Advances in Neural Information Proces-sing Systems 31, Montréal, Dec?3-8,?2018: 9333-9343.
[5] NIE J, ANWER R M, CHOLAKKAL H, et al. Enriched feature guided refinement network for object detection[C]// Proceedings of the 2019 IEEE/CVF International Confe-rence on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 9536-9545.
[6] PANG Y, WANG T, ANWER R M, et al. Efficient featu-rized image pyramid network for single shot detector[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 7336-7344.
[7] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv:2004.10934, 2020.
[8] 李青援, 邓赵红, 罗晓清, 等. 注意力与跨尺度融合的SSD目标检测算法[J]. 计算机科学与探索, 2022, 16(11): 2575-2586.
LI Q Y, DENG Z H, LUO X Q, et al. SSD object detection algorithm with attention and cross-scale fusion[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(11): 2575-2586.
[9] JOSEPH K J, KHAN S, KHAN F S, et al. Towards open world object detection[C]//Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition, Jun 19-25, 2021. Piscataway: IEEE, 2021: 5830-5840.
[10] WANG X, HUANG T E, DARRELl T, et al. Frustratingly simple few-shot object detection[J]. arXiv:2003.06957, 2020.
[11] HALL D, DAYOUB F, SKINNER J, et al. Probabilistic object detection: definition and evaluation[C]//Proceedings of the 2020 IEEE Winter Conference on Applications of Computer Vision, Snowmass Village, Mar 1-5, 2020. Pisca-taway: IEEE, 2020: 1020-1029.
[12] 高菲, 杨柳, 李晖. 开放集识别研究综述[J]. 南京大学学报 (自然科学版), 2022, 58(1): 115-134.
GAO F, YANG L, LI H. A survey on open set recognition[J]. Journal of Nanjing University (Natural Science), 2022, 58(1): 115-134.
[13] MILLER D, DAYOUB F, MILFORD M, et al. Evaluating merging strategies for sampling-based uncertainty techni-ques in object detection[C]//Proceedings of the 2019 Inter-national Conference on Robotics and Automation,Montreal, May 20-24, 2019. Piscataway: IEEE, 2019: 2348-2354.
[14] DHAMIJA A, GUNTHER M, VENTURA J, et al. The overlooked elephant of object detection: open set[C]//Proce-edings of the 2020 IEEE Winter Conference on Applic-ations of Computer Vision, Snowmass Village, Mar 1-5, 2020. Piscataway: IEEE, 2020: 1010-1019.
[15] PERERA P, MORARIU V I, JAIN R, et al. Generative-discriminative feature representations for open-set recog-nition[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 11811-11820.
[16] YOSHIHASHI R, SHAO W, KAWAKAMI R, et al. Class-ification-reconstruction learning for open-set recognition[C]//Proceedings of the 2019 IEEE Conference on Com-puter Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 4016-4025.
[17] BENDALE A, BOULT T. Towards open world recognition[C]//Proceedings of the 2015 IEEE Conference on Com-puter Vision and Pattern Recognition, Boston, Jun 7-12, 2015. Washington: IEEE Computer Society, 2015: 1893-1902.
[18] PENG C, ZHAO K, LOVELL B C. Faster ILOD: incre-mental learning for object detectors based on faster RCNN[J]. Pattern Recognition Letters, 2020, 140: 109-115.
[19] SHMELKOV K, SCHMID C, ALAHARI K. Incremental learning of object detectors without catastrophic forgetting[C]//Proceedings of the 2017 IEEE International Confe-rence on Computer Vision, Venice, Oct 22-29, 2017. Wash-ington: IEEE Computer Society, 2017: 3420-3429.
[20] 刘冰瑶, 刘进锋. 增量学习研究综述[J]. 现代计算机, 2022, 28(13): 72-75.
LIU B Y, LIU J F. Literature review of incremental learning[J]. Modern Computer, 2022, 28(13): 72-75.
[21] REBUFFI S A, KOLESNIKOV A, SPERL G, et al. iCaRL: incremental classifier and representation learning[C]//Proc-eedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Wash-ington: IEEE Computer Society, 2017: 5533-5542.
[22] KANAKIS M, BRUGGEMANN D, SAHA S, et al. Repar-ameterizing convolutions for incremental multi-task learning without task interference[C]//LNCS 12365: Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 689-707.
[23] KIRKPATRICK J, PASCANU R, RABINOWITZ N, et al. Overcoming catastrophic forgetting in neural networks[J]. Proceedings of the National Academy of Sciences, 2017, 114(13): 3521-3526.
[24] ZHAO G M, GE W F, YU Y Z. GraphFPN: graph feature pyramid network for object detection[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Oct 10-17, 2021. Piscataway: IEEE, 2021: 2743-2752.
[25] MANINIS K K, PONT-TUSET J, ARBELáEZ P, et al. Convolutional oriented boundaries: from image segme-ntation to high-level tasks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(4): 819-833.
[26] VELI?KOVI? P, CUCURULL G, CASANOVA A, et al.Graph attention networks[J]. arXiv:1710.10903, 2017.
[27] CHAUDHARI P, CHOROMANSKA A, SOATTO S, et al. Entropy-SGD: biasing gradient descent into wide valleys[J]. Journal of Statistical Mechanics: Theory and Exper-iment, 2019(12): 124018.
[28] SHI G, CHEN J, ZHANG W, et al. Overcoming cata-strophic forgetting in incremental few-shot learning by finding flat minima[C]//Advances in Neural Information Processing Systems?34,?Dec?6-14,?2021: 6747-6761.
[29] DU J, ZHOU D, FENG J, et al. Sharpness-aware training for free[C]//Advances in Neural nformation Processing Sys-tems 35, New Orleans, Nov 28-Dec 9, 2022: 23439-23451.
[30] DONG N, ZHANG Y, DING M, et al. Open world DETR: transformer based open world object detection[J]. arXiv:2212.02969, 2022. |