[1] 陈江美, 张文德. 基于位置社交网络的兴趣点推荐系统研究综述[J]. 计算机科学与探索, 2022, 16(7): 1462-1478.
CHEN J M, ZHANG W D. Review of point of interest recommendation systems in location-based social networks[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1462-1478.
[2] FENG S, CONG G, AN B, et al. POI2Vec: geographical latent representation for predicting future visitors[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence, San Francisco, Feb 4-9, 2017. Menlo Park: AAAI, 2017: 102-108.
[3] WANG H, SHEN H, OUYANG W, et al. Exploiting POI-specific geographical influence for point-of-interest recommendation[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence, Stockholm, Jul 13-19, 2018: 3877-3883.
[4] CHANG B, JANG G, KIM S, et al. Learning graph-based geographical latent representation for point-of-interest recommendation[C]//Proceedings of the 29th ACM International Conference on Information and Knowledge Management, Oct 19-23, 2020. New York: ACM, 2020: 135-144.
[5] LANG C, WANG Z, HE K, et al. POI recommendation based on a multiple bipartite graph network model[J]. The Journal of Supercomputing, 2022, 78(7): 9782-9816.
[6] SHI C, HU B, ZHAO W X, et al. Heterogeneous information network embedding for recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 31(2): 357-370.
[7] XIONG X, XIONG F, ZHAO J, et al. Dynamic discovery of favorite locations in spatio-temporal social networks[J]. Information Processing & Management, 2020, 57(6): 102337.
[8] LI Z, CHENG W, XIAO H, et al. You are what and where you are: graph enhanced attention network for explainable POI recommendation[C]//Proceedings of the 30th ACM International Conference on Information and Knowledge Management, Nov 1-5, 2021. New York: ACM, 2021: 3945-3954.
[9] DAI S, YU Y, FAN H, et al. Personalized POI recommendation: spatio-temporal representation learning with social tie[C]//Proceedings of the 26th International Conference on Database Systems for Advanced Applications, Taipei, China, Apr 11-14, 2021. Cham: Springer, 2021: 558-574.
[10] TANG J, QU M, WANG M, et al. LINE: large-scale information network embedding[C]//Proceedings of the 24th International Conference on World Wide Web, Florence, May 18-22, 2015. New York: ACM, 2015: 1067-1077.
[11] LI X, CONG G, LI X, et al. Rank-GeoFM: a ranking based geographical factorization method for point of interest recommendation[C]//Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, Santiago, Aug 9-13, 2015. New York: ACM, 2015: 433-442.
[12] PAN Z, CUI L, WU X, et al. Deep potential geo-social relationship mining for point-of-interest recommendation[J]. IEEE Access, 2019, 7: 99496-99507.
[13] SUN Z, LI C, LEI Y, et al. Point-of-interest recommendation for users-businesses with uncertain check-ins[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(12): 5925-5938.
[14] WANG W, CHEN J, WANG J, et al. Geography-aware inductive matrix completion for personalized point-of-interest recommendation in smart cities[J]. IEEE Internet of Things Journal, 2019, 7(5): 4361-4370.
[15] ZHANG Y, LIU G, LIU A, et al. Personalized geographical influence modeling for POI recommendation[J]. IEEE Intelligent Systems, 2020, 35(5): 18-27.
[16] 安敬民, 李冠宇, 蒋伟, 等. 基于用户活动轨迹和个性化区域划分的兴趣点推荐[J]. 计算机学报, 2022, 45(6): 1176-1194.
AN J M, LI G Y, JIANG W, et al. A point-of-interest recommendation method based on activity tracks and personalized-area partitions of users[J]. Chinese Journal of Computers, 2022, 45(6): 1176-1194.
[17] ZHAO P, LUO A, LIU Y, et al. Where to go next: a spatio-temporal gated network for next POI recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(5): 2512-2524.
[18] YUAN Z, LIU H, LIU J, et al. Incremental spatio-temporal graph learning for online query-POI matching[C]//Proceedings of the Web Conference 2021, Ljubljana, Apr 19-23, 2021. New York: ACM, 2021: 1586-1597.
[19] LI Q, XU X, LIU X, et al. An attention-based spatiotemporal GGNN for next POI recommendation[J]. IEEE Access, 2022, 10: 26471-26480.
[20] RAO X, CHEN L, LIU Y, et al. Graph-flashback network for next location recommendation[C]//Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, Aug 14-18, 2022. New York:ACM, 2022: 1463-1471.
[21] WANG X, SUN G, FANG X, et al. Modeling spatio-temporal neighbourhood for personalized point-of-interest recommendation[C]//Proceedings of the 31st International Joint Conference on Artificial Intelligence, Vienna, Jul 23-29, 2022: 3530-3536.
[22] CAI H, ZHENG V W, CHANG K C C. A comprehensive survey of graph embedding: problems, techniques, and applications[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 30(9): 1616-1637.
[23] 赵霞, 张泽华, 张晨威, 等. RGNE: 粗糙粒化的网络嵌入式重叠社区发现方法[J]. 计算机研究与发展, 2020, 57(6): 1302-1311.
ZHAO X, ZHANG Z H, ZHANG C W, et al. RGNE:a network embedding method for overlapping community detection based on rough granulation[J]. Journal of Computer Research and Development, 2020, 57(6): 1302-1311.
[24] SU Y, LI X, ZHA D, et al. HRec: heterogeneous graph embedding-based personalized point-of-interest recommendation[C]//Proceedings of the 26th International Conference on Neural Information Processing, Sydney, Dec 12-15, 2019.Cham: Springer, 2019: 37-49.
[25] WANG Z, ZHU Y, ZHANG Q, et al. Graph-enhanced spatial-temporal network for next POI recommendation[J]. ACM Transactions on Knowledge Discovery from Data, 2022, 16(6): 1-21.
[26] YU D, YU T, WANG D, et al. NGPR: a comprehensive personalized point-of-interest recommendation method based on heterogeneous graphs[J]. Multimedia Tools and Applications, 2022, 81(27): 39207-39228.
[27] CHENG C, YANG H, KING I, et al. Fused matrix factorization with geographical and social influence in location-based social networks[C]//Proceedings of the 26th AAAI Conference on Artificial Intelligence, Toronto, Jul 22-26, 2012.Menlo Park: AAAI, 2012: 17-23. |