[1] 朱扬勇, 孙婧. 推荐系统研究进展[J]. 计算机科学与探索, 2015, 9(5): 513-525.
ZHU Y Y, SUN J. Recommender system: up to now[J]. Journal of Frontiers of Computer Science and Technology, 2015, 9(5): 513-525.
[2] 赵海燕, 赵佳斌, 陈庆奎, 等. 会话推荐系统[J]. 小型微型计算机系统, 2019, 40(9): 1869-1875.
ZHAO H Y, ZHAO J B, CHEN Q K, et al. Session-based recommendation system[J]. Journal of Chinese Computer Systems, 2019, 40(9): 1869-1875.
[3] 曾义夫, 牟其林, 周乐, 等. 基于图表示学习的会话感知推荐模型[J]. 计算机研究与发展, 2020, 57(3): 590-603.
ZENG Y F, MOU Q L, ZHOU L, et al. Graph embedding based session perception model for next-click recommendation[J]. Journal of Computer Research and Development, 2020, 57(3): 590-603.
[4] 方军, 管业鹏. 基于双编码器的会话型推荐模型[J]. 西安交通大学学报, 2021, 55(8): 166-174.
FANG J, GUAN Y P. A session recommendation model based on dual encoders[J]. Journal of Xi??an Jiaotong University, 2021, 55(8): 166-174.
[5] SARWAR B, KARYPIS G, KONSTAN J, et al. Item-based collaborative filtering recommendation algorithms[C]//Proceedings of the 10th International World Wide Web Conference, Hong Kong, China, May 1-5, 2001: 285-295.
[6] HE R N, MCAULEY J. Fusing similarity models with Markov chains for sparse sequential recommendation[C]//Proceedings of the 16th International Conference on Data Mining, Barcelona, Dec 12-15, 2016: 191-200.
[7] HIDASI B, KARAT Z A, BALTRUNAS L, et al. Session-based recommendations with recurrent neural networks[C]//Proceedings of the 4th International Conference on Learning Representations, San Juan, May 2-4, 2016.
[8] LI J, REN P, CHEN Z, et al. Neural attentive session-based recommendation[C]//Proceedings of the 2017 ACM Conference on Information and Knowledge Management. New York: ACM, 2017: 1419-1428.
[9] LIU Q, ZENG Y F, MOKHOSI R, et al. Short-term attention/memory priority model for session-based recommendation[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, London, Aug 19-23, 2018. New York: ACM, 2018: 1831-1839.
[10] LIN J C W, SHAO Y, DJENOURI Y, et al. ASRNN: a recurrent neural network with an attention model for sequence labeling[J]. Knowledge-Based Systems, 2021, 212: 106548.
[11] 黄震华, 林小龙, 孙圣力, 等. 会话场景下基于特征增强的图神经推荐方法[J]. 计算机学报, 2022, 45(4): 766-780.
HUANG Z H, LIN X L, SUN S L, et al. Feature augmentation based graph neural recommendation method in session scenarios[J]. Chinese Journal of Computers, 2022, 45(4): 766-780.
[12] 任俊伟, 曾诚, 肖丝雨, 等. 基于会话的多粒度图神经网络推荐模型[J]. 计算机应用, 2021, 41(11): 3164-3170.
REN J W, ZENG C, XIAO S Y, et al. Session-based recommendation model of multi-granular graph neural network[J]. Journal of Computer Applications, 2021, 41(11): 3164-3170.
[13] 吴静, 谢辉, 姜火文. 图神经网络推荐系统综述[J]. 计算机科学与探索, 2022, 16(10): 2249-2263.
WU J, XIE H, JIANG H W. Survey of graph neural network in recommendation system[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(10): 2249-2263.
[14] WU S, TANG Y Y, ZHU Y Q, et al. Session-based recommendation with graph neural networks[C]//Proceedings of the 2019 AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2019: 346-353.
[15] XU C F, ZHAO P P, LIU Y C, et al. Graph contextualized self-attention network for session-based recommendation[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence, Macao, China, Aug 10-16, 2019: 3940-3946.
[16] RENDLE S, FREUDEN T C, SCHMIDT T L. Factorizing personalized Markov chains for next-basket recommendation[C]//Proceedings of the 19th International Conference on World Wide Web, Raleigh, Apr 26-30, 2010. New York: ACM, 2010: 811-820.
[17] KOREN Y, BELL R, VOLINSKY C. Matrix factorization techniques for recommender systems[J]. Computer, 2009, 42(8): 30-37.
[18] ISENSEE F, JAEGER P F, KOHL S A A, et al. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation[J]. Nature Methods, 2021, 18(2): 203-211.
[19] CHO K, VAN MERRI?NBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, Doha, Oct 26-28, 2014. Stroudsburg: ACL, 2014: 1724-1734.
[20] WANG M, REN P, MEI L, et al. A collaborative session-based recommendation approach with parallel memory modules[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2019: 345-354.
[21] ASWANI A V, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems 30, Long Beach, Dec 4-9, 2017: 5998-6008.
[22] CHEN T W, WONG R C W. Handling information loss of graph neural networks for session-based recommendation[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2020: 1172-1180.
[23] WANG Z Y, WEI W, CONG G, et al. Global context enhanced graph neural networks for session-based recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 169-178.
[24] CAI D, LAM W. Graph transformer for graph-to-sequence learning[C]//Proceedings of the 2020 AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2020: 7464-7471.
[25] ZHU G, HOU H, CHEN J, et al. Transition relation aware self-attention for session-based recommendation[J]. arXiv:2203.06407, 2022.
[26] GUPTA P, GARG D, MALHOTRA P, et al. NISER: normalized item and session representations to handle popularity bias[J]. arXiv:1909.04276, 2019. |