计算机科学与探索 ›› 2023, Vol. 17 ›› Issue (10): 2278-2299.DOI: 10.3778/j.issn.1673-9418.2302059
许鑫冉,王腾宇,鲁才
出版日期:
2023-10-01
发布日期:
2023-10-01
XU Xinran, WANG Tengyu, LU Cai
Online:
2023-10-01
Published:
2023-10-01
摘要: 作为知识的一种有效的表征方式,知识图谱网络可以用于表示不同类别之间丰富的事实信息,成为有效的知识管理工具,并在知识工程和人工智能领域的应用和研究取得了较大的成果。知识图谱通常表现为一种复杂的网络结构,其非结构化特点使得将图神经网络应用于知识图谱的分析和研究成为学术界的研究热点。旨在对基于图神经网络的知识图谱构建技术提供广泛、全面的研究,以解决两类知识图谱构建的任务,包括知识抽取(实体、关系和属性抽取)和知识合并与加工(链接预测、实体对齐和知识推理等),通过这些任务,可以进一步完善知识图谱的结构,并能够发现新的知识和推理关系。还研究了基于高级的图神经网络方法用于知识图谱相关的应用,如推荐系统、问答系统和计算机视觉等。最后提出了基于图神经网络的知识图谱应用的未来研究方向。
许鑫冉, 王腾宇, 鲁才. 图神经网络在知识图谱构建与应用中的研究进展[J]. 计算机科学与探索, 2023, 17(10): 2278-2299.
XU Xinran, WANG Tengyu, LU Cai. Research Progress of Graph Neural Network in Knowledge Graph Construction and Application[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(10): 2278-2299.
[1] DAI Y, WANG S, XIONG N N, et al. A survey on knowle-dge graph embedding: approaches, applications and bench-marks[J]. Electronics, 2020, 9(5): 750. [2] SUCHANEK F M, KASNECI G, WEIKUM G. YAGO: a core of semantic knowledge[C]//Proceedings of the 16th International Conference on World Wide Web, Banff, May 8-12, 2007. New York: ACM, 2007: 697-706. [3] BOLLACKER K, EVANS C, PARITOSH P, et al. Freebase: a collaboratively created graph database for structuring human knowledge[C]//Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, Vancouver, Jun 10-12, 2008. New York: ACM, 2008: 1247-1250. [4] AUER S, BIZER C, KOBILAROV G, et al. DBpedia: a nuc-leus for a web of open data[C]//LNCS 4825: Proceedings of the 6th International Semantic Web Conference on the Semantic Web, Busan, Nov 11-15, 2007. Berlin, Heidelberg: Springer, 2007: 722-735. [5] ALANI H, SANGHEE K, MILLARD D E, et al. Automatic ontology-based knowledge extraction from Web documents[J]. IEEE Intelligent Systems, 2003, 18(1): 14-21. [6] CHEN X, JIA S, XIANG Y. A review: knowledge reasoning over knowledge graph[J]. Expert Systems with Applications, 2020, 141: 112948. [7] LIBEN-NOWELL D, KLEINBERG J M. The link prediction problem for social networks[C]//Proceedings of the 2003 ACM CIKM International Conference on Information and Knowledge Management, New Orleans, Nov 2-8, 2003. New York: ACM, 2003: 556-559. [8] SUN Z Q, HU W, ZHANG Q H, et al. Bootstrapping entity alignment with knowledge graph embedding[C]//Proceedings of the 27th International Joint Conference on Artificial Intel-ligence, Stockholm, Jul 13-19, 2018: 4396-4402. [9] DREDZE M, MCNAMEE P, RAO D, et al. Entity disambi-guation for knowledge base population[C]//Proceedings of the 23rd International Conference on Computational Lingui-stics, Beijing, Aug 23-27, 2010. Beijing: Tsinghua Univer-sity Press, 2010: 277-285. [10] REN H, LESKOVEC J. Beta embeddings for multi-hop logical reasoning in knowledge graphs[C]//Advances in Neural Information Processing Systems 33, Dec 6-12, 2020: 19716-19726. [11] SCARSELLI F, GORI M, TSOI A C, et al. The graph neural network model[J]. IEEE Transactions on Neural Networks, 2008, 20(1): 61-80. [12] ZHOU J, CUI G, HU S, et al. Graph neural networks: a review of methods and applications[J]. AI Open, 2020, 1: 57-81. [13] KIKUTA D, SUZUMURA T, RAHMAN M M, et al. KQGC: knowledge graph embedding with smoothing effects of graph convolutions for recommendation[J]. arXiv:2205.12102, 2022. [14] YASUNAGA M, REN H, BOSSELUT A, et al. QA-GNN: reasoning with language models and knowledge graphs for question answering[J]. arXiv:2104.06378, 2021. [15] GAO J, ZHANG T Z, XU C S. I know the relationships: zero-shot action recognition via two-stream graph convolutional networks and knowledge graphs[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence, the 31st Innov-ative Applications of Artificial Intelligence Conference, the 9th AAAI Symposium on Educational Advances in Artifi-cial Intelligence, Honolulu, Jan 27-Feb 1, 2019. Menlo Park: AAAI, 2019: 8303-8311. [16] WANG Q, MAO Z, WANG B, et al. Knowledge graph embedding: a survey of approaches and applications[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(12): 2724-2743. [17] ZOU X. A survey on application of knowledge graph[J]. Journal of Physics: Conference Series, 2020, 1487(1): 012016. [18] WU Z, PAN S, CHEN F, et al. A comprehensive survey on graph neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 32(1): 4-24. [19] 孙水发, 李小龙, 李伟生, 等. 图神经网络应用于知识图谱推理的研究综述[J]. 计算机科学与探索, 2023, 17(1): 27-52. SUN S F, LI X L, LI W S, et al. Review of graph neural net-works applied to knowledge graph reasoning[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 27-52. [20] 张吉祥, 张祥森, 武长旭, 等. 知识图谱构建技术综述[J]. 计算机工程, 2022, 48(3): 23-37. ZHANG J X, ZHANG X S, WU C X, et al. Survey of knowledge graph construction techniques[J]. Computer Eng-ineering, 2022, 48(3): 23-37. [21] 吴国栋, 王雪妮, 刘玉良. 知识图谱增强的图神经网络推荐研究进展[J]. 计算机工程与应用, 2023, 59(4): 18-29. WU G D, WANG X N, LIU Y L. Research advances on graph neural network recommendation of knowledge graph enhancement[J]. Computer Engineering and Applications, 2023, 59(4): 18-29. [22] 延照耀, 丁苍峰, 马乐荣, 等. 面向图神经网络的知识图谱嵌入研究进展[J]. 计算机科学与探索, 2023, 17(8): 1793-1813. YAN Z Y, DING C F, MA L R, et al. Advances in knowle-dge graph embedding based on graph neural networks[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(8): 1793-1813. [23] 陈子睿, 王鑫, 王林, 等. 开放领域知识图谱问答研究综述[J]. 计算机科学与探索, 2021,15(10): 1843-1869. CHEN Z R, WANG X, WANG L, et al. Survey of open-domain knowledge graph question answering[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(10): 1843-1869. [24] ZENG K, LI C, HOU L, et al. A comprehensive survey of entity alignment for knowledge graphs[J]. AI Open, 2021, 2: 1-13. [25] JI S, PAN S, CAMBRIA E, et al. A survey on knowledge graphs: representation, acquisition, and applications[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(2): 494-514. [26] LIN B Y, CHEN X, CHEN J, et al. KagNet: knowledge-aware graph networks for commonsense reasoning[C]//Pro-ceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, Hong Kong, China. Stroudsburg: ACL, 2019: 2829-2839. [27] FANOURAKIS N, EFTHYMIOU V, KOTZINOS D, et al. Knowledge graph embedding methods for entity alignment: an experimental review[J]. arXiv:2203.09280, 2022. [28] HUANG H, LI C, PENG X, et al. Cross-knowledge-graph entity alignment via relation prediction[J]. Knowledge-Based Systems, 2022, 240: 107813. [29] ZAMINI M, REZA H, RABIEI M, et al. A review of know-ledge graph completion[J]. Information, 2022, 13(8): 396. [30] CHEN M, ZHANG W, GENG Y, et al. Generalizing to unseen elements: a survey on knowledge extrapolation for knowledge graphs[J]. arXiv:2302.01859, 2023. [31] YAN Q, FAN J, LI M, et al. A survey on knowledge graph embedding[C]//Proceedings of the 7th IEEE International Conference on Data Science in Cyberspace, Guilin, Jul 11-13, 2022. Piscataway: IEEE, 2022: 576-583. [32] PANG J, ZHANG Y H, DENG J X, et al. A survey on infor-mation retrieval method for knowledge graph complex ques-tion answering[C]//Proceedings of the 2022 China Auto-mation Congress, Xiamen, Nov 25-27, 2022. Piscataway: IEEE, 2022: 1059-1064. [33] ETEZADI R, SHAMSFARD M. The state of the art in open domain complex question answering: a survey[J]. Applied Intelligence, 2023, 53(4): 4124-4144. [34] ABDEL-NABI H, AWAJAN A, ALI M Z, et al. Deep learn-ing-based question answering: a survey[J]. Knowledge and Information Systems, 2023, 65(4): 1399-1485. [35] ZHANG L, ZHANG J, KE X, et al. A survey on complex factual question answering[J]. AI Open, 2023, 4: 1-12. [36] LIU J, DUAN L. A survey on knowledge graph-based recom-mender systems[C]//Proceedings of the 2021 IEEE 5th Adv-anced Information Technology, Electronic and Automation Control Conference, Chongqing, Mar 12-14, 2021. Piscata-way: IEEE, 2021: 2450-2453. [37] GAO Y, LI Y F, LIN Y, et al. Deep learning on knowledge graph for recommender system: a survey[J]. arXiv:2004.00387, 2020. [38] GAO C, ZHENG Y, LI N, et al. A survey of graph neural networks for recommender systems: challenges, methods, and directions[J]. ACM Transactions on Recommender Sys-tems, 2023, 1(1): 1-51. [39] ZENG X, TU X, LIU Y, et al. Toward better drug discovery with knowledge graph[J]. Current Opinion in Structural Biology, 2022, 72: 114-126. [40] BORDES A, USUNIER N, GARCIA-DURAN A, et al. Trans-lating embeddings for modeling multi-relational data[C]//Advances in Neural Information Processing Systems 26,Lake Tahoe, Dec 5-8, 2013: 2787-2795. [41] WANG Z, ZHANG J W, FENG J L, et al. Knowledge graph embedding by translating on hyperplanes[C]//Proceedings of the 28th AAAI Conference on Artificial Intelligence,Québec City, Jul 27-31, 2014. Menlo Park: AAAI, 2014: 1112-1119. [42] JI G L, HE S Z, XU L H, et al. Knowledge graph embed-ding via dynamic mapping matrix[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing of the Asian Federation of Natural Language Processing, Beijing, Jul 26-31, 2015.Stroudsburg: ACL, 2015: 687-696. [43] LIN Y K, LIU Z Y, SUN M S, et al. Learning entity and relation embeddings for knowledge graph completion[C]//Proceedings of the 29th AAAI Conference on Artificial Intelligence, Austin, Jan 25-30, 2015. Menlo Park: AAAI, 2015: 2181-2187. [44] FAN M, ZHOU Q, CHANG E, et al. Transition-based know-ledge graph embedding with relational mapping properties[C]//Proceedings of the 28th Pacific Asia Conference on Language, Information and Computation, Phuket, Dec 12-14, 2014. Stroudsburg: ACL, 2014: 328-337. [45] TROUILLON T, WELBL J, RIEDEL S, et al. Complex embeddings for simple link prediction[C]//Proceedings of the 33rd International Conference on Machine Learning, New York, Jun 19-24, 2016: 2071-2080. [46] YANG B, YIH W T, HE X, et al. Embedding entities and relations for learning and inference in knowledge bases[J].arXiv:1412.6575, 2014. [47] DETTMERS T, MINERVINI P, STENETORP P, et al. Con-volutional 2D knowledge graph embeddings[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence, the 30th Innovative Applications of Artificial Intelligence and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence, New Orleans, Feb 2-7, 2018. Menlo Park: AAAI, 2018: 1811-1818. [48] NGUYEN D Q, NGUYEN T D, NGUYEN D Q, et al. A novel embedding model for knowledge base completion based on convolutional neural network[J]. arXiv:1712.02121, 2017. [49] SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks[C]//LNCS 10843: Proceedings of the 15th International Conference the Semantic Web, Heraklion, Jun 3-7, 2018. Cham: Springer, 2018: 593-607. [50] TIAN A, ZHANG C, RANG M, et al. RA-GCN: relational aggregation graph convolutional network for knowledge graph completion[C]//Proceedings of the 12th International Conference on Machine Learning and Computing, Shen-zhen, Feb 15-17, 2020. New York: ACM, 2020: 580-586. [51] CAI L, YAN B, MAI G C, et al. TransGCN: coupling trans-formation assumptions with graph convolutional networks for link prediction[C]//Proceedings of the 10th Internatio-nal Conference on Knowledge Capture, Marina Del Rey, Nov 19-21, 2019. New York: ACM, 2019: 131-138. [52] YU D H, YANG Y M, ZHANG R H, et al. Knowledge embedding based graph convolutional network[C]//Procee-dings of the Web Conference 2021, Ljubljana, Apr 19-23, 2021. New York: ACM, 2021: 1619-1628. [53] COWIE J R, LEHNERT W G. Information extraction[J]. Communications of the ACM, 1996, 39(1): 80-91. [54] DOWNEY D, BROADHEAD M, ETZIONI O. Locating complex named entities in web text[C]//Proceedings of the 20th International Joint Conference on Artificial Intelli-gence, Hyderabad, Jan 6-12, 2007: 2733-2739. [55] MCCALLUM A, LI W. Early results for named entity recognition with conditional random fields, feature induc-tion and web-enhanced lexicons[C]//Proceedings of the 7th Conference on Natural Language Learning, Edmonton, May 31-Jun 1, 2003. Stroudsburg: ACL, 2003: 188-191. [56] COLLOBERT R, WESTON J, BOTTOU L, et al. Natural language processing (almost) from scratch[J]. Journal of Machine Learning Research, 2011, 12: 2493-2537. [57] STRUBELL E, VERGA P, BELANGER D, et al. Fast and accurate entity recognition with iterated dilated convolu-tions[J]. arXiv:1702.02098, 2017. [58] ZHANG Y, QI P, MANNING C D. Graph convolution over pruned dependency trees improves relation extraction[J]. arXiv:1809.10185, 2018. [59] GUO Z, ZHANG Y, LU W. Attention guided graph convo-lutional networks for relation extraction[J]. arXiv:1906.07510, 2019. [60] SUN K, ZHANG R, MAO Y, et al. Relation extraction with convolutional network over learnable syntax-transport graph[C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence, the 32nd Innovative Applications of Artificial Intelligence Conference, the 10th AAAI Symposium on Educational Advances in Artificial Intelligence, New York, Feb 7-12, 2020. Menlo Park: AAAI, 2020: 8928-8935. [61] BASTOS A, NADGERI A, SINGH K, et al. RECON: relation extraction using knowledge graph context in a graph neural network[C]//Proceedings of the Web Conference 2021,Ljubljana, Apr 19-23, 2021. New York: ACM, 2021: 1673-1685. [62] TIAN Y H, CHEN G M, SONG Y, et al. Dependency-driven relation extraction with attentive graph convolutio-nal networks[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, Aug 1-6, 2021. Stroudsburg: ACL, 2021: 4458-4471. [63] CHRISTOPOULOU F, MIWA M, ANANIADOU S. Conne-cting the dots: document-level neural relation extraction with edge-oriented graphs[J]. Pattern Recognition Letters, 2021, 149: 150-156. [64] SAHU S K, CHRISTOPOULOU F, MIWA M, et al. Inter-sentence relation extraction with document-level graph con-volutional neural network[C]//Proceedings of the 57th Con-ference of the Association for Computational Linguistics, Florence, Jul 28-Aug 2, 2019. Stroudsburg: ACL, 2019: 4309-4316. [65] WANG D, HU W, CAO E, et al. Global-to-local neural networks for document-level relation extraction[J]. arXiv: 2009.10359, 2020. [66] CHEN H, HONG P, HAN W, et al. Dialogue relation extrac-tion with document-level heterogeneous graph attention net-works[J]. Cognitive Computation, 2023, 15(2): 793-802. [67] ZENG S, XU R, CHANG B, et al. Double graph based rea-soning for document-level relation extraction[J]. arXiv:2009.13752, 2020. [68] TRAN H M, NGUYEN M T, NGUYEN T H. The dots have their values: exploiting the node-edge connections in graph-based neural models for document-level relation extraction[C]//Findings of the Association for Computational Linguis-tics, Nov 16-20, 2020. Stroudsburg: ACL, 2020: 4561-4567. [69] NAN G, GUO Z, SEKULI? I, et al. Reasoning with latent structure refinement for document-level relation extraction[J]. arXiv:2005.06312, 2020. [70] HALED A, ELSIR A M T, SHEN Y. TFGAN: traffic fore-casting using generative adversarial network with multi graph convolutional network[J]. Knowledge-Based Systems, 2022: 108990. [71] SHANG C. End-to-end structure-aware convolutional networks on graphs[R]. University of Connecticut, 2020. [72] WANG Z H, REN Z C, HE C Y, et al. Robust embedding with multi-level structures for link prediction[C]//Procee-dings of the 28th International Joint Conference on Artificial Intelligence, Macao, China, Aug 10-16, 2019: 5240-5246. [73] LIU X, TAN H, CHEN Q, et al. RAGAT: relation aware graph attention network for knowledge graph completion[J]. IEEE Access, 2021, 9: 20840-20849. [74] NATHANI D, CHAUHAN J, SHARMA C, et al. Learning attention-based embeddings for relation prediction in know-ledge graphs[J]. arXiv:1906.01195, 2019. [75] LUO Q, WANG J, ZHAO W, et al. Vasculogenic mimicry in carcinogenesis and clinical applications[J]. Journal of Hematology Oncology, 2020, 13(1): 1-15. [76] LI Z, LIU H, ZHANG Z, et al. Learning knowledge graph embedding with heterogeneous relation attention networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(8): 3961-3973. [77] LIU S, GRAU B, HORROCKS I, et al. INDIGO: GNN-based inductive knowledge graph completion using pair-wise encoding[C]//Advances in Neural Information Proces-sing Systems 34, Dec 6-14, 2021: 2034-2045. [78] TERU K, DENIS E, HAMILTON W. Inductive relation prediction by subgraph reasoning[C]//Proceedings of the 37th International Conference on Machine Learning, Jul 13-18, 2020: 9448-9457. [79] XU X, FENG W, JIANG Y, et al. Dynamically pruned mes-sage passing networks for large-scale knowledge graph reasoning[J]. arXiv:1909.11334, 2019. [80] MOHAMED H A, PILUTTI D, JAMES S, et al. Locality-aware subgraphs for inductive link prediction in knowledge graphs[J]. Pattern Recognition Letters, 2023, 167: 90-97. [81] WANG S, WEI X, DOS C N, et al. Santos mixed-curvature multi-relational graph neural network for knowledge graph completion[C]//Proceedings of the Web Conference 2021, Ljubljana, Apr 19-23, 2021. New York: ACM, 2021: 1761-1771. [82] WANG Y, WANG H, LU W, et al. HyGGE: hyperbolic graph attention network for reasoning over knowledge graphs[J]. Information Sciences, 2023, 630: 190-205. [83] WU Z, PAN S, LONG G, et al. Graph wavenet for deep spatial-temporal graph modeling[J]. arXiv:1906.00121, 2019. [84] AI B, QIN Z, SHEN W, et al. Structure enhanced graph neural networks for link prediction[J]. arXiv:2201.05293, 2022. [85] ZHANG S C, ZHANG J N, SONG X, et al. PaGE-Link: path-based graph neural network explanation for hetero-geneous link prediction[C]//Proceedings of the ACM Web Conference 2023, Austin, Apr 30-May 4, 2023. New York: ACM, 2023: 3784-3793. [86] ZHANG Y Y, CHEN X S, YANG Y, et al. Efficient probabi-listic logic reasoning with graph neural networks[C]//Pro-ceedings of the 8th International Conference on Learning Representations, Addis Ababa, Apr 26-30, 2020: 1-20. [87] XIANG Y X, WU J J, WANG T X, et al. Reasoning path generation for answering multi-hop questions over knowle-dge graph[C]//LNCS 13422:Proceedings of the 6th Interna-tional Joint Conference on Web and Big Data, Nanjing, Nov 25-27, 2022. Cham: Springer, 2023: 195-209. [88] JUNG J, JUNG J, KANG U. Learning to walk across time for interpretable temporal knowledge graph completion[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Singapore, Aug 14-18, 2021. New York: ACM, 2021: 786-795. [89] ACHEAMPONG K N, TIAN W H. Advancement of textual answer triggering: cognitive boosting[J]. IEEE Transactions on Emerging Topics in Computing, 2022, 10(1): 361-372. [90] WANG Q, HAO Y, CHEN F. Deepening the IDA* algori-thm for knowledge graph reasoning through neural network architecture[J]. Neurocomputing, 2021, 429: 101-109. [91] ZHANG Y Q, YAO Q M. Knowledge graph reasoning with relational digraph[C]//Proceedings of the ACM Web Confe-rence 2022, Lyon, Apr 25-29, 2022. New York: ACM, 2022: 912-924. [92] WANG Z, LV Q, LAN X, et al. Cross-lingual knowledge graph alignment via graph convolutional networks[C]//Pro-ceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Oct 31-Nov 4, 2018. Stroudsburg: ACL, 2018: 349-357. [93] WU Y, LIU X, FENG Y, et al. Relation-aware entity alignment for heterogeneous knowledge graphs[J]. arXiv:1908.08210, 2019. [94] YANG H W, ZOU Y Y, SHI P, et al. Aligning cross-lingual entities with multi-aspect information[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Confer-ence on Natural Language Processing, Hong Kong, China, Nov 3-7, 2019. Stroudsburg: ACL, 2019: 4430-4440. [95] CAO Y X, LIU Z Y, LI C J, et al. Multi-channel graph neural network for entity alignment[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Jul 28-Aug 2, 2019. Stroudsburg: ACL, 2019: 1452-1461. [96] YE R, LI X, FANG Y J, et al. A vectorized relational graph convolutional network for multi-relational network alignment[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence, Macao, China, Aug 10-16, 2019: 4135-4141. [97] MAO X, WANG W T, XU H M, et al. MRAEA: an efficient and robust entity alignment approach for cross-lingual know-ledge graph[C]//Proceedings of the 13th International Con-ference on Web Search and Data Mining, Houston, Feb 3-7, 2020. New York: ACM, 2020: 420-428. [98] WU Y, LIU X, FENG Y, et al. Jointly learning entity and relation representations for entity alignment[J]. arXiv: 1909. 09317, 2019. [99] NIE H, HAN X, SUN L, et al. Global structure and local semantics-preserved embeddings for entity alignment[C]//Proceedings of the 29th International Joint Conference on Artificial Intelligence, Yokohama, Jul 2020: 3658-3664. [100] WU Y T, LIU X, FENG Y S, et al. Neighborhood matching network for entity alignment[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Lin-guistics, Jul 5-10, 2020. Stroudsburg: ACL, 2020: 6477-6487. [101] MAO X, WANG W T, XU H M, et al. Relational reflec-tion entity alignment[C]//Proceedings of the 29th ACM International Conference on Information & Knowledge Management, Ireland, Oct 19-23, 2020. New York: ACM, 2020: 1095-1104. [102] PEI S C, YU L, YU G X, et al. REA: robust cross-lingual entity alignment between knowledge graphs[C]//Procee-dings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Aug 23-27, 2020. New York: ACM, 2020: 2175-2184. [103] LIU Z Y, CAO Y X, PAN L M, et al. Exploring and evaluating attributes, values, and structures for entity align-ment[C]//Proceedings of the 2020 Conference on Empi-rical Methods in Natural Language Processing, Nov 16-20, 2020. Stroudsburg: ACL, 2020: 6355-6364. [104] SUN Z Q, WANG C M, HU W, et al. Knowledge graph alignment network with gated multi-hop neighborhood aggregation[C]//Proceedings of the 34th AAAI Confere-nce on Artificial Intelligence, the 32nd Innovative Applica-tions of Artificial Intelligence Conference, the 10th AAAI Symposium on Educational Advances in Artificial Intellige-nce, New York, Feb 7-12, 2020. Menlo Park: AAAI, 2020: 222-229. [105] TANG W, SU F, SUN H, et al. Weakly supervised entity alignment with positional inspiration[C]//Proceedings of the 16th ACM International Conference on Web Search and Data Mining, Singapore, Feb 27-Mar 3, 2023. New York: ACM, 2023: 814-822. [106] ZHANG X, ZHANG R, CHEN J, et al. Semi-supervised entity alignment with global alignment and local informa-tion aggregation[J]. IEEE Transactions on Knowledge and Data Engineering, 2023: 1-14. [107] YANG C, WANG C, LU Y, et al. Few-shot link prediction in dynamic networks[C]//Proceedings of the 15th ACM International Conference on Web Search and Data Mining,Tempe, Feb 21-25, 2022. New York: ACM, 2022: 1245-1255. [108] JIN Y, JI W, SHI Y, et al. Meta-path guided graph attention network for explainable herb recommendation[J]. Health Information Science and Systems, 2023, 11(1): 5. [109] ZHANG F, LI J, CHENG J. Improving entity alignment via attribute and external knowledge filtering[J]. Applied Intelligence, 2023, 53(6): 6671-6681. [110] ZHU Q N, ZHOU X F, WU J, et al. Neighborhood-aware attentional representation for multilingual knowledge graphs[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence, Macao, China, Aug 10-16, 2019: 1943-1949. [111] CHEN M Y, ZHANG W, ZHU Y S, et al. Meta-knowledge transfer for inductive knowledge graph embedding[C]//Proceedings of the 45th International ACM SIGIR Confer-ence on Research and Development in Information Retrie-val, Madrid, Jul 11-15, 2022. New York: ACM, 2022: 927-937. [112] HU L, DING J, SHI C, et al. Graph neural entity disambi-guation[J]. Knowledge-Based Systems, 2020, 195: 105620. [113] LI G S, LI H M, PAN Y, et al. Name disambiguation based on entity relationship graph in big data[C]//Proceedings of the 7th International Conference on Data Mining and Big Data, Beijing, Nov 21-24, 2022. Cham: Springer, 2022: 319-329. [114] SUCHANEK F M, KASNECI G, WEIKUM G. Yago: a core of semantic knowledge[C]//Proceedings of the 16th International Conference on World Wide Web, Banff, May 8-12, 2007. New York: ACM, 2007: 697-706. [115] WANG H W, ZHAO M, XIE X, et al. Knowledge graph convolutional networks for recommender systems[C]//Pro-ceedings of the 2019 World Wide Web Conference, San Francisco, May 13-17, 2019. New York: ACM, 2019: 3307-3313. [116] WANG Y, LIU Z W, FAN Z W, et al. DSKReG: differen-tiable sampling on knowledge graph for recommendation with relational GNN[C]//Proceedings of the 30th ACM International Conference on Information and Knowledge Management, Queensland, Nov 1-5, 2021. New York: ACM, 2021: 3513-3517. [117] WANG Y, TANG S Y, LEI Y T, et al. DisenHAN: disen-tangled heterogeneous graph attention network for recom-mendation[C]//Proceedings of the 29th ACM International Conference on Information and Knowledge Management, Ireland, Oct 19-23, 2020. New York: ACM, 2020: 1605-1614. [118] MA T, HUANG L T, LU Q Q, et al. KR-GCN: knowledge-aware reasoning with graph convolution network for expla-inable recommendation[J]. ACM Transactions on Informa-tion Systems, 2022, 41(1): 4. [119] TAUNK D, KHANNA L, KANDRU P, et al. GrapeQA: Graph augmentation and pruning to enhance question- answering[J]. arXiv:2303.12320, 2023. [120] YANG Z, WU L, WEN P, et al. Visual question answering reasoning with external knowledge based on bimodal graph neural network[J]. Electronic Research Archive, 2023, 31(4): 1948-1965. [121] CHEN Z, SINGH A K, SRA M. LMExplainer: a knowledge-enhanced explainer for language models[J]. arXiv:2303.16537, 2023. [122] YU D H, ZHU C G, FANG Y W, et al. KG-FiD: infusing knowledge graph in fusion in decoder for open-domain question answering[J]. arXiv:2110.04330, 2021. [123] LV S W, GUO D Y, XU J J, et al. Graph-based reasoning over heterogeneous external knowledge for commonsense question answering[C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence, the 32nd Innovative Applications of Artificial Intelligence Conference, the 10th AAAI Symposium on Educational Advances in Artificial Intelligence, New York, Feb 7-12, 2020. Menlo Park: AAAI, 2020: 8449-8456. [124] FENG Y L, CHEN X Y, LIN B Y, et al. Scalable multi-hop relational reasoning for knowledge-aware question answe-ring[C]//Proceedings of the 2020 Conference on Empir-ical Methods in Natural Language Processing, Nov 16-20, 2020. Stroudsburg: ACL, 2020: 1295-1309. [125] CHEN Y, WU L, ZAKI M J. Toward subgraph-guided knowledge graph question generation with graph neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023: 1-12. [126] GUAN X, CAO B W, GAO Q Q, et al. CORN: co-reasoning network for commonsense question answering[C]//Procee-dings of the 29th International Conference on Computa-tional Linguistics, Gyeongju, Oct 12-17, 2022: 1677-1686. [127] LIN X, QUAN Z, WANG Z J, et al. KGNN: knowledge graph neural network for drug-drug interaction prediction[C]//Proceedings of the 29th International Joint Confer-ence on Artificial Intelligence, Yokohama, Jul 2020: 2739-2745. [128] YU Y, HUANG K, ZHANG C, et al. SumGNN: multi-typed drug interaction prediction via efficient knowledge graph summarization[J]. Bioinformatics, 2021, 37(18): 2988-2995. [129] CHEN M K, GONG X W, JIN Y H, et al. Relation prefere-nce oriented high-order sampling for recommendation[C]//Proceedings of the 16th ACM International Conference on Web Search and Data Mining, Singapore, Feb 27-Mar 3, 2023. New York: ACM, 2023: 105-113. [130] WANG Y N, ZHANG J, ZHOU X M, et al. Hierarchical aggregation based knowledge graph embedding for multi-task recommendation[C]//LNCS 13423: Proceedings of the 6th International Joint Conference on Web and Big Data, Nanjing, Nov 25-27, 2022. Cham: Springer, 2023: 174-181. [131] WANG Z, WANG Z, LI X, et al. Exploring multi-dimen-sion user-item interactions with attentional knowledge graph neural networks for recommendation[J]. IEEE Transac-tions on Big Data, 2023, 9(1): 212-226. [132] ZHANG X, BOSSELUT A, YASUNAGA M, et al. Grea-seLM: graph reasoning enhanced language models for question answering[J]. arXiv:2201.08860, 2022. [133] CHEN M H, TIAN Y T, CHANG K W, et al. Co-training embeddings of knowledge graphs and entity descriptions for cross-lingual entity alignment[C]//Proceedings of the 27th International Joint Conference on Artificial Intellige-nce, Jul 13-19, 2018: 3998-4004. [134] TRISEDYA B D, QI J, ZHANG R. Entity alignment between knowledge graphs using attribute embeddings[C]//Procee-dings of the 33rd AAAI Conference on Artificial Intelli-gence, the 31st Innovative Applications of Artificial Intelli-gence Conference, the 9th AAAI Symposium on Educatio-nal Advances in Artificial Intelligence, Honolulu, Jan 27-Feb 1, 2019. Menlo Park: AAAI, 2019: 297-304. [135] WANG Y Y, XIA C H, SI C X, et al. Robust reasoning over heterogeneous textual information for fact verification[J].IEEE Access, 2020, 8: 157140-157150. |
[1] | 崔焕庆, 宋玮情, 杨峻铸. 知识水波图卷积网络推荐模型[J]. 计算机科学与探索, 2023, 17(9): 2209-2218. |
[2] | 钱付兰, 王文学, 郑文杰, 陈洁, 赵姝. 基于层次保留的知识图谱嵌入链路预测方法[J]. 计算机科学与探索, 2023, 17(9): 2174-2183. |
[3] | 延照耀, 丁苍峰, 马乐荣, 曹璐, 游浩. 面向图神经网络的知识图谱嵌入研究进展[J]. 计算机科学与探索, 2023, 17(8): 1793-1813. |
[4] | 陈娜, 黄金诚, 李平. 结合对比学习的图神经网络防御方法[J]. 计算机科学与探索, 2023, 17(8): 1949-1960. |
[5] | 彭晏飞, 张睿思, 王瑞华, 郭家隆. 少样本知识图谱补全技术研究[J]. 计算机科学与探索, 2023, 17(6): 1268-1284. |
[6] | 李智杰, 韩瑞瑞, 李昌华, 张颉, 石昊琦. 融合预训练模型和注意力的实体关系抽取方法[J]. 计算机科学与探索, 2023, 17(6): 1453-1462. |
[7] | 邬锦琛, 杨兴耀, 于炯, 李梓杨, 黄擅杭, 孙鑫杰. 双通道异构图神经网络序列推荐算法[J]. 计算机科学与探索, 2023, 17(6): 1473-1486. |
[8] | 赵晔辉, 柳林, 王海龙, 韩海燕, 裴冬梅. 知识图谱推荐系统研究综述[J]. 计算机科学与探索, 2023, 17(4): 771-791. |
[9] | 韩虎, 郝俊, 张千锟, 孟甜甜. 知识增强的交互注意力方面级情感分析模型[J]. 计算机科学与探索, 2023, 17(3): 709-718. |
[10] | 马力, 姚伟凡. 结合关系路径与有向子图推理的链接预测方法[J]. 计算机科学与探索, 2023, 17(2): 478-488. |
[11] | 尹华, 肖石冉, 陈智全, 胡振生, 龙泳潮. 多语义关系嵌入的知识图谱补全方法[J]. 计算机科学与探索, 2023, 17(2): 467-477. |
[12] | 翟岩慧, 何煦, 李德玉, 张超. 融合决策蕴涵的知识图谱推理方法[J]. 计算机科学与探索, 2023, 17(11): 2743-2754. |
[13] | 梁新雨, 司冠南, 李建辛, 田鹏新, 安兆亮, 周风余. 面向知识图谱补全的归纳学习研究综述[J]. 计算机科学与探索, 2023, 17(11): 2580-2604. |
[14] | 张鹤译, 王鑫, 韩立帆, 李钊, 陈子睿, 陈哲. 大语言模型融合知识图谱的问答系统研究[J]. 计算机科学与探索, 2023, 17(10): 2377-2388. |
[15] | 彭鐄, 曾维新, 周杰, 唐九阳, 赵翔. 基于图神经网络的实体对齐表示学习方法比较研究[J]. 计算机科学与探索, 2023, 17(10): 2343-2357. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||