[1] GANTER B, WILLE R. Formal concept analysis, mathematical foundations[M]. Berlin, Heidelberg: Springer, 1999.
[2] WILLE R. Restructuring lattice theory, an approach based on hierarchies of concepts[C]//LNCS 5548: Proceedings of the 2009 International Conference on Formal Concept Analysis, Darmstadt, May 21-24, 2009. Berlin, Heidelberg: Springer, 2009: 314-339.
[3] QU K S, ZHAI Y H, LIANG J Y, et al. Study of decision implications based on formal concept analysis[J]. International Journal of General Systems, 2007, 36(2): 147-156.
[4] ZHAI Y H, LI D Y, QU K S. Decision implications, a logical point of view[J]. International Journal of Machine Learning and Cybernetics, 2014, 5(4): 509-516.
[5] ZHAI Y H, LI D Y, QU K S. Decision implication canonical basis, a logical perspective[J]. Journal of Computer and System Sciences, 2015, 81(1): 208-218.
[6] ZHAI Y H, JIA N, ZHANG S X, et al. Study on deduction process and inference methods of decision implications[J]. International Journal of Machine Learning and Cybernetics, 2022, 13(7): 1959-1979.
[7] WU W Z, LEUNG Y, MI J S. Granular computing and know-ledge reduction in formal contexts[J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 21: 1461-1474.
[8] ZHANG S X, LI D Y, ZHAI Y H, et al. A comparative study of decision implication, concept rule and granular rule[J]. Information Sciences, 2020, 508: 33-49.
[9] TU X D, WANG Y L, ZHANG M L, et al. Using formal concept analysis to identify negative correlations in gene expression data[J]. IEEE/ACM Transactions on Computational Biology & Bioinformatics, 2016, 13(2): 380-391.
[10] ZHI H L, QI J J, QIAN T, et al. Con?ict analysis under one-vote veto based on approximate three-way concept lattice[J]. Information Sciences, 2020, 516: 316-330.
[11] ZOU C F, ZHANG D Q, WAN J F, et al. Using concept lattice for personalized recommendation system design[J]. IEEE Systems Journal, 2017, 11(1): 305-314.
[12] QIN K Y, LI B, ZHENG P. Attribute reduction and rule acquisition of formal decision context based on object (property) oriented concept lattices[J]. International Journal of Machine Learning and Cybernetics, 2019, 10(10): 2837-2850.
[13] CORNEJO M E, MEDINA J, RAMíREZ-POUSSA E. Attribute and size reduction mechanisms in multi-adjoint concept lattices[J]. Journal of Computational and Applied Mathematics, 2017, 318: 388-402.
[14] REN R S, WEI L. The attribute reductions of three-way concept lattices[J]. Knowledge Based Systems, 2016, 99: 92-102.
[15] ZHAI Y H, LI D Y. Knowledge structure preserving fuzzy attribute reduction in fuzzy formal context[J]. International Journal of Approximate Reasoning, 2019, 115: 209-220.
[16] LI J H, KUMAR C A, MEI C L, et al. Comparison of reduction in formal decision contexts[J]. International Journal of Approximate Reasoning, 2017, 80: 100-122.
[17] SHAO M W, LI K W. Attribute reduction in generalized one-sided formal contexts[J]. Information Sciences, 2016, 378: 317-327.
[18] LI J H, MEI C L, XU W H, et al. Concept learning via granular computing, a cognitive viewpoint[J]. Information Sciences, 2015, 298: 447-467.
[19] SHI Y, MI Y L, LI J H, et al. Concept-cognitive learning model for incremental concept learning[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(2): 809-821.
[20] 李金海, 米允龙, 刘文奇. 概念的渐进式认知理论与方法[J]. 计算机学报, 2019, 42(10): 2233-2250.
LI J H, MI Y L, LIU W Q. Incremental cognition of concepts, theories and methods[J]. Chinese Journal of Computers, 2019, 42(10): 2233-2250.
[21] XU W H, LI W T. Granular computing approach to two-way learning based on formal concept analysis in fuzzy datasets[J]. IEEE Transactions on Cybernetics, 2016, 46 (2): 366-379.
[22] SEBASTIEN F. A proposal for extending formal concept analysis to knowledge graphs[C]//Proceedings of the 13th International Conference on Formal Concept Analysis, Nerja, Jun 23-26, 2015: 271-286.
[23] 李金海, 魏玲, 张卓, 等. 概念格理论与方法及其研究展望[J]. 模式识别与人工智能, 2020, 33(7): 619-642.
LI J H, WEI L, ZHANG Z, et al. Concept lattice theory methods and their research prospect[J]. Pattern Recognition and Artificial Intelligence, 2020, 33(7): 619-642.
[24] JI S X, PAN S R, ERIK C, et al. A survey on knowledge graphs, representation, acquisition, and applications[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(2): 494-514.
[25] NATHANI D, CHAUHAN J, SHARMA C, et al. Learning attention-based embeddings for relation prediction in know-ledge graphs[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Jul 28-Aug 2, 2019. Stroudsburg: ACL, 2019: 4710-4723.
[26] BORDES A, USUNIER N, GARCIA-DURAN A, et al. Translating embeddings for modeling multi-relational data[C]//Proceedings of the 2013 Neural Information Processing Systems, Lake Tahoe, Dec 5-8, 2013. Piscataway: IEEE, 2013: 2787-2795.
[27] WANG Z, ZHANG J W, FENG J L, et al. Knowledge graph embedding by translating on hyperplanes[C]//Proceedings of the 28th AAAI Conference on Artificial Intelligence, Que- bec, Jul 27-31, 2014. Menlo Park: AAAI, 2014: 1112-1119.
[28] LIN Y K, LIU Z Y, SUN M S, et al. Learning entity and relation embeddings for knowledge graph completion[C]//Proceedings of the 29th AAAI Conference on Artificial Intelligence, Austin, Jan 25-30, 2015. Menlo Park: AAAI, 2015: 2181-2187.
[29] JI G L, HE S Z, XU L H, et al. Knowledge graph embedding via dynamic mapping matrix[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, Beijing, Jul 26-31, 2015. Stroudsburg: ACL, 2015: 687-696.
[30] DETTMERS T, MINERVINI P, STENETORP P, et al. Convolutional 2D knowledge graph embeddings[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence, New Orleans, Feb 2-7, 2018. Menlo Park: AAAI, 2018: 1811-1818.
[31] NGUYEN D Q, NGUYEN T D, NGUYEN D Q, et al. A novel embedding model for knowledge base completion based on convolutional neural network[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics, New Orleans, Jun 1-6, 2018. Stroudsburg: ACL, 2018: 327-333.
[32] BORDES A, GLOROT X, WESTON J, et al. A semantic matching energy function for learning with multi-relational data[J]. Machine Learning, 2014, 94(2): 233-259.
[33] OU M D, CUI P, PEI J, et al. Asymmetric transitivity preserving graph embedding[C]//Proceedings of the 22nd ACM SIGKDD International Conference of Knowledge Discovery and Data Mining, San Francisco, Aug 13-17, 2016. New York: ACM, 2016: 1105-1114.
[34] ZHANG Z H, HUANG J B, TAN Q L. Association rules enhanced knowledge graph attention network[J]. Knowledge-Based Systems, 2022, 239: 108038.
[35] MAO Y Y, CHEN H H. Rule-guided compositional representation learning on knowledge graphs with hierarchical types[J]. Mathematics, 2021, 9(16): 1978.
[36] LI J H, MEI C L, LV Y J. A heuristic knowledge reduction method for decision formal contexts[J]. Computer and Mathematics with Applications, 2011, 61: 1096-1106.
[37] LI J H, MEI C L, LV Y J. Knowledge reduction in formal decision contexts based on an order preserving mapping[J]. International Journal of General Systems, 2012, 41(2): 143-161.
[38] ZHAI Y H, LI D Y, QU K S. Fuzzy decision implications[J]. Knowledge-Based Systems, 2013, 37: 230-236.
[39] ZHAI Y H, LI D Y, QU K S. Fuzzy decision implication canonical basis[J]. International Journal of Machine Learning and Cybernetics, 2018, 9(11): 1909-1917.
[40] ZHAI Y H, LI D Y, ZHANG J. Variable decision knowledge representation, a logical description[J]. Journal of Computational Science, 2018, 25: 161-169. |