[1] 张大坤, 任淑霞. 超图可视化方法研究综述[J]. 计算机科学与探索, 2018, 12(11): 1701-1717.
ZHANG D K, REN S X. Survey on hypergraph visualization method[J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(11): 1701-1717.
[2] FATEMI B, TASLAKIAN P, VAZQUEZ D, et al. Knowledge hypergraphs: prediction beyond binary relations[C]//Proceedings of the 29th International Joint Conference on Artificial Intelligence, Yokohama, 2020: 2191-2197.
[3] 武家伟, 孙艳春. 融合知识图谱和深度学习方法的问诊推荐系统[J]. 计算机科学与探索, 2021, 15(8): 1432-1440.
WU J W, SUN Y C. Recommendation system for medical consultation integrating knowledge graph and deep learning methods[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(8): 1432-1440.
[4] 孙亚伟, 程龚, 厉肖, 等. 基于图匹配网络的可解释知识图谱复杂问答方法[J]. 计算机研究与发展, 2021, 58(12): 2673-2683.
SUN Y W, CHENG G, LI X, et al. Graph matching network for interpretable complex question answering over knowledge graphs[J]. Journal of Computer Research and Development, 2021, 58(12): 2673-2683.
[5] KAZEMI S M, BUCHMAN D, KERSTING K, et al. Relational logistic regression[C]//Proceedings of the 14th International Conference on Principles of Knowledge Representation and Reasoning, Vienna, Jul 20-24, 2014. Menlo Park: AAAI, 2014: 1-10.
[6] GUAN S P, JIN X L, WANG Y Z, et al. Link prediction on n-ary relational data[C]//Proceedings of the 2019 World Wide Web Conference, San Francisco, May 13-17, 2019. New York: ACM, 2019: 583-593.
[7] GUAN S P, JIN X L, GUO J F, et al. Neuinfer: knowledge inference on n-ary facts[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Jul 5-10, 2020. Stroudsburg: ACL, 2020: 6141-6151.
[8] ROSSO P, YANG D Q, CUDRé-MAUROUX P. Beyond triplets: hyper-relational knowledge graph embedding for link prediction[C]//Proceedings of the Web Conference 2020, Taipei, China, Apr 20-24, 2020. New York: ACM, 2020: 1885-1896.
[9] WEN J F, LI J X, MAO Y Y, et al. On the representation and embedding of knowledge bases beyond binary relations[C]//Proceedings of the 25th International Joint Conference on Artificial Intelligence, New York, Jul 9-15, 2016. Menlo Park: AAAI, 2016: 1300-1307.
[10] LIU Y, YAO Q M, LI Y. Generalizing tensor decomposition for n-ary relational knowledge bases[C]//Proceedings of the Web Conference 2020, Taipei, China, Apr 20-24, 2020. New York: ACM, 2020: 1104-1114.
[11] 郭正山, 左劼, 段磊, 等. 面向知识超图链接预测的生成对抗负采样方法[J]. 计算机研究与发展, 2022, 59(8): 1742-1756.
GUO Z S, ZUO J, DUAN L, et al. A generative adversarial negative sampling method for knowledge hypergraph link prediction[J]. Journal of Computer Research and Development, 2022, 59(8): 1742-1756.
[12] BORDES A, USUNIER N, GARCIA-DURAN A, et al. Translating embeddings for modeling multi-relational data[C]//Proceedings of the Annual Conference on Neural Information Processing Systems 2013, Lake Tahoe, Dec 5-8, 2013. Red Hook: Curran Associates, 2013: 2787-2795.
[13] WANG Z, ZHANG J W, FENG J L, et al. Knowledge graph embedding by translating on hyperplanes[C]//Proceedings of the 28th AAAI Conference on Artificial Intelligence, Québec City, Jul 27-31, 2014. Menlo Park: AAAI, 2014: 1112-1119.
[14] BALAZEVIC I, ALLEN C, HOSPEDALES T. TuckER: tensor factorization for knowledge graph completion[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, Hong Kong, China, Nov 3-7, 2019. Stroudsburg: ACL, 2019: 5184-5193.
[15] KAZEMI S M, POOLE D. Simple embedding for link prediction in knowledge graphs[C]//Proceedings of the Annual Conference on Neural Information Processing Systems 2018, Montréal, Dec 3-8, 2018: 4289-4300.
[16] NATHANI D, CHAUHAN J, SHARMA C, et al. Learning attention-based embeddings for relation prediction in know-ledge graphs[C]//Proceedings of the 57th Conference of the Association for Computational Linguistics, Florence, Jul 28-Aug 2, 2019. Stroudsburg: ACL, 2019: 4710-4723.
[17] KADLEC R, BAJGAR O, KLEINDIENST J. Knowledge base completion: baselines strike back[C]//Proceedings of the 2nd Workshop on Representation Learning for NLP, Vancouver, Aug 3, 2017. Stroudsburg: ACL, 2017: 69-74.
[18] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 770-778.
[19] LI R Y M, TANG B, CHAU K W. Sustainable construction safety knowledge sharing: a partial least square-structural equation modeling and a feedforward neural network approach[J]. Sustainability, 2019, 11(20): 5831.
[20] NGUYEN D Q. An overview of embedding models of entities and relationships for knowledge base completion[J]. arXiv:1703.08098, 2017.
[21] MIKHAIL G, PRIYANSH T, GAURAV M, et al. Message passing for hyper-relational knowledge graphs[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, Nov 16-20, 2020. Stroudsburg: ACL, 2020: 7346-7359. |