计算机科学与探索 ›› 2023, Vol. 17 ›› Issue (10): 2358-2376.DOI: 10.3778/j.issn.1673-9418.2307065
李源,马新宇,杨国利,赵会群,宋威
出版日期:
2023-10-01
发布日期:
2023-10-01
LI Yuan, MA Xinyu, YANG Guoli, ZHAO Huiqun, SONG Wei
Online:
2023-10-01
Published:
2023-10-01
摘要: 近几十年来,因果关系推断是统计学、计算机科学、教育、公共政策和经济学等许多领域的一个重要研究课题。其中大部分因果推断方法是从样本观测数据和文本语料分析的角度进行研究。如今,随着各种知识图谱和大语言模型的涌现,面向知识图谱和大模型的因果关系推断逐渐成为了研究热点。因此,将不同的因果关系推断方法按照面向样本观测数据、文本数据、知识图谱和大语言模型进行分类,在每个分类中,对经典的研究工作从其问题定义、解决方法、贡献和不足进行了细致的分析。同时,对因果关系推断方法与知识图谱和大语言模型相结合的研究进展进行了重点讨论。从效率和成本角度分析和比较了不同因果推断方法,总结归纳了知识图谱和大语言模型在因果关系推断任务中的具体应用。最后,对知识图谱和大模型相结合的因果关系推断的未来发展方向进行了展望。
李源, 马新宇, 杨国利, 赵会群, 宋威. 面向知识图谱和大语言模型的因果关系推断综述[J]. 计算机科学与探索, 2023, 17(10): 2358-2376.
LI Yuan, MA Xinyu, YANG Guoli, ZHAO Huiqun, SONG Wei. Survey of Causal Inference for Knowledge Graphs and Large Language Models[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(10): 2358-2376.
[1] YING Q, XU D S H. The birth of analytical action philosophy—from the point of “causal explanation”[J]. Tianjin Soc Sci, 2021, 12(2): 57. [2] GREENLAND S, PEARL J, ROBINS J M. Confounding and collapsibility in causal inference[J]. Statistical Science, 1999, 14(1): 29. [3] 王朱君, 王石, 李雪晴, 等. 面向深度学习的事件因果关系抽取综述[J]. 计算机应用, 2021, 41(5): 1247-1255. WANG Z J, WANG S, LI X Q, et al. A review of event causal relation extraction based on deep learning[J]. Com-puter Applications, 2021, 41(5): 1247-1255. [4] 胡志磊, 靳小龙, 陈剑赟, 等. 事件图谱的构建、推理与应用[J]. 大数据, 2021, 7(3): 80-96. HU Z L, JIN X L, CHEN J Y, et al. Construction, inference, and application of event knowledge graph[J]. Big Data, 2021, 7(3): 80-96. [5] 黄紫阳. 基于生物医学知识图谱和药物分子结构的药物-药物相互作用预测[D]. 武汉: 华中农业大学, 2022. HUANG Z Y. Prediction of drug-drug interactions based on biomedical knowledge graphs and drug molecular structures[D]. Wuhan: Huazhong Agricultural University, 2022. [6] GUO R, CHENG L, LI J, et al. A survey of learning causality with data: problems and methods[J]. arXiv:1809.09337v4, 2018. [7] YAO L, CHU Z, LI S, et al. A survey on causal inference[J]. ACM Transactions on Knowledge Discovery from Data, 2021(5). [8] GONG C, YAO D, ZHANG C, et al. Causal discovery from temporal data: an overview and new perspectives[J]. arXiv:2303.10112, 2023. [9] MOLUGARAM K, RAO G S. Chi-square distribution[M]// Statistical Techniques for Transportation Engineering, 2017:383-413. [10] BENESTY J, CHEN J, HUANG Y, et al.?Pearson correla-tion coefficient[M]//Springer Topics in Signal Processing, 2009: 1-4. [11] KOROL R M, CANHAM P B, LUCAS A R. Multiple reg-ression analysis[J]. Biophotonics International, 1960, 12(8): 47-48. [12] SPIRTES P, GLYMOUR C, SCHEINES R. Causation, pre-diction, and search[M]. Cambridge: MIT Press, 2000. [13] JOWETT G H. Statistical methods and scientific inference[J]. Journal of the Royal Statistical Society, 1957, 6(3): 226-227. [14] SPLAWA-NEYMAN J, DABROWSKA D M, SPEED T P. On the application of probability theory to agricultural ex-periments. Essay on principles. Section 9[J]. Statistical Science, 1990, 5(4): 465-472. [15] RUBIN D B. Estimating causal effects of treatments in ran-domized and nonrandomized studies[J]. Journal of Educa-tional Psychology, 1974, 66(5): 688. [16] ROSENBAUM P R, RUBIN D B. The central role of the propensity score in observational studies for causal effects[J]. Biometrika, 1983, 70(1): 41-55. [17] BICKEL P J, HAMMEL E A, O??CONNELL J W. Sex bias in graduate admissions: data from Berkeley[J]. Science, 1975, 187(4175): 398. [18] RUBIN D B. Causal inference using potential outcomes: de-sign, modeling, decisions[J]. Journal of the American Statis-tical Association, 2005, 100(469): 322-331. [19] MUNCH M, DIBIE-BARTHELEMY J, WUILLEMIN P H, et al. Interactive causal discovery in knowledge graphs[C]// Proceedings of the 2019 International Semantic Web Con-ference, 2019: 78-93. [20] YUAN K H, BENTLER P M. 10 structural equation mo-deling[J]. Handbook of Statistics, 2006, 26: 297-358. [21] AWANG Z, AFTHANORHAN A, ASRI M A M. Parametric and non parametric approach in structural equation modeling (SEM): the application of bootstrap[J]. Modern Applied Science, 2015, 9(9): 58. [22] HITCHCOCK C, PEARL J. Causality: models, reasoning and inference[J]. Philosophical Review, 2001, 110(4): 639. [23] PEARL J. Probabilistic reasoning in intelligent systems: net-works of plausible inference[M]. San Mateo: Morgan Kau-fmann, 1988. [24] SPIEGELHALTER D J, DAWID A P, LAURITZEN S L, et al. Bayesian analysis in expert systems[J]. Statistical Science, 1993: 219-247. [25] WILLIAMS T C, BACH C C, MATTHIESEN N B, et al. Directed acyclic graphs: a tool for causal studies in paedia-trics[J]. Pediatric research, 2018, 84(4): 487-493. [26] LAURITZEN S L, SPIEGELHALTER D J. Local compu-tations with probabilities on graphical structures and their application to expert systems[M]. San Francisco: Morgan Kaufmann Publishers Inc., 1990. [27] RICHARDSON T S, ROBINS J M. Single world intervention graphs (SWIGs): a unification of the counterfactual and graphical approaches to causality[Z]. 2013. [28] SPIRTES P, GLYMOUR C, SCHEINES R. Causation, predic-tion, and search[M]. 2nd ed. Cambridge: MIT Press, 2001. [29] CHICKERING D M. Optimal structure identification with greedy search[J]. Journal of Machine Learning Research, 2003, 3: 507-554. [30] ZHANG J. On the completeness of orientation rules for causal discovery in the presence of latent confounders and selection bias[J]. Artificial Intelligence, 2008. [31] PEARL J. Probabilistic reasoning in intelligent systems-networks of plausible inference[M]. San Mateo: Morgan Kaufmann, 1988. [32] SHIMIZU S, HOYER P O, HYVRINEN A, et al. A linear non-Gaussian acyclic model for causal discovery[J]. Journal of Machine Learning Research, 2006, 7(4): 2003-2030. [33] CHICKERING D M. Optimal structure identification with greedy search[J]. Journal of Machine Learning Research, 2002, 3: 507-554. [34] ZHU S, NG I, CHEN Z. Causal discovery with reinforcement learning[J]. arXiv:1906.04477, 2019. [35] HECKERMAN D. Bayesian networks for data mining[J]. Data Mining and Knowledge Discovery, 1997, 1(1): 79-119. [36] HECKERMAN D, MEEK C, COOPER G. A Bayesian app-roach to causal discovery: MSR-TR-97-05[R]. 1997. [37] MORGAN. Counterfactuals and causal inference[M]. Cam-bridge: Cambridge University Press, 2007. [38] GARCIA D. COATIS, an NLP system to locate expressions of actions connected by causality links[C]//Proceedings of the 1997 International Conference on Knowledge Engineering and Knowledge Management. Berlin, Heidelberg: Springer, 1997: 347-352. [39] KHOO C S G, KORNFILT J, ODDY R N, et al. Automatic extraction of cause-effect information from newspaper text without knowledge-based inferencing[J]. Literary and Linguistic Computing, 1998, 13(4): 177-186. [40] DE SILVA T N, XIAO Z B, ZHAO R, et al. Causalrelation identification using convolutional neural networks and know-ledge based features[J]. International Journal of Computer and Systems Engineering, 2017, 11(6): 697-702. [41] HIDEY C, MCKEOWN K. Identifying causalrelations using parallel Wikipedia articles[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2016: 1424-1433. [42] ZHAO S D, LIU T, ZHAO S C, et al. Event causality ex-traction based on connectives analysis[J]. Neurocomputing, 2016, 173: 1943-1950. [43] 冯冲, 康丽琪, 石戈, 等. 融合对抗学习的因果关系抽取[J]. 自动化学报, 2018, 44(5): 811-818. FENG C, KANG L Q, SHI G, et al. Causality extraction with GAN[J]. Acta Automatica Sinica, 2018, 44(5): 811-818. [44] KRUENGKRAI C, TORISAWA K, HASHIMOTO C, et al.Improving event causality recognition with multiple background knowledge sources using multi-column convolutional neural networks[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2017: 3466-3473. [45] FU J F, LIU Z T, LI W, et al. Event causal relation extrac-tion based on cascaded conditional random fields[J]. Pattern Recognition and Artificial Intelligence, 2011, 24(4): 567-573. [46] DASGUPTA T, SAHA R, DEY L, et al. Automatic extrac-tion of causal relations from text using linguistically in-formed deep neural networks[C]//Proceedings of the 19th Annual SIGdial Meeting on Discourse and Dialogue, 2018. [47] QIU J N, XU L W, ZHAI J, et al. Extracting causal relations from emergency cases based on conditional random fields[J]. Procedia Computer Science, 2017, 112: 1623-1632. [48] BLEI D M, NG A, JORDAN M I. Latent Dirichlet allocation[J]. The Journal of Machine Learning Research, 2003. [49] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[J]. arXiv:1810.04805, 2018. [50] VEITCH V, SRIDHAR D, BLEI D M. Adapting text em-beddings for causal inference[C]//Proceedings of the 36th Conference on Uncertainty in Artificial Intelligence, Aug 3-6, 2020: 919-928. [51] ROBERTS M E, STEWART B M, NIELSEN R A. Adjusting for confounding with text matching[J]. American Journal of Political Science, 2020(1). [52] SRIDHAR D, GETOOR L. Estimating causal effects of tone in online debates[J]. arXiv:1906.04177, 2019. [53] MOZER R, MIRATRIX L, KAUFMAN A R, et al. Matching with text data: an experimental evaluation of methods for matching documents and of measuring match quality[J]. Po-litical Analysis, 2018. [54] MILLER G A. WordNet:a lexical database for English[J]. Communications of the ACM, 1995, 38(11): 39-41. [55] PAN S, LUO L, WANG Y, et al. Unifying large language models and knowledge graphs: a roadmap[J]. arXiv:2306. 08302, 2023. [56] 马昂, 于艳华, 杨胜利, 等. 基于强化学习的知识图谱综述[J]. 计算机研究与发展, 2022, 59(8): 1694-1722. MA A, YU Y H, YANG S L, et al. Survey of knowledge graph based on reinforcement learning[J]. Journal of Computer Research and Development, 2022, 59(8): 1694-1722. [57] 宋浩楠, 赵刚, 孙若莹. 基于深度强化学习的知识推理研究进展综述[J]. 计算机工程与应用, 2022, 58(1): 12-25. SONG H N, ZHAO G, SUN R Y. Developments of know-ledge reasoning based on deep reinforcement learning[J]. Computer Engineering and Applications, 2022, 58(1): 12-25. [58] 张仲伟, 曹雷, 陈希亮, 等. 基于神经网络的知识推理研究综述[J]. 计算机工程与应用, 2019, 55(12): 8-19. ZHANG Z W, CAO L, CHEN X L, et al. Survey of know-ledge reasoning based on neural network[J]. Computer En-gineering and Applications, 2019, 55(12): 8-19. [59] SPEER R, CHIN J, HAVASI C. ConceptNet 5.5: an open multilingual graph of general knowledge[J]. arXiv:1612. 03975, 2016. [60] SINGHAL A. Introducing the knowledge graph:things,not strings[EB/OL]. [2023-05-09]. https://www.blog.google/pro-ducts/search/introducing-knowledge-graph-things-not/. [61] JAIMINI U, SHETH A. CausalKG: causal knowledge graph explainability using interventional and counterfactual reasoning[J]. IEEE Internet Computing, 2022, 26(1): 43-50. [62] HUANG H. Causal relationship over knowledge graphs[C]//Proceedings of the 31st ACM International Conference on Information & Knowledge Management. New York: ACM, 2022: 5116-5119. [63] MUNCH M, DIBIE-BARTHELEMY J, WUILLEMIN P H ,et al. Towards interactive causal relation discovery driven by an ontology[C]//Proceedings of the 32nd International Florida Artificial Intelligence Research Society Conference, Sarasota, May 19-22, 2019. Menlo Park: AAAI Press, 2019: 504-508. [64] LUCAS S, PERNELLE N, SA?S F, et al. Differential causal rules mining in knowledge graphs[C]//Proceedings of the 11th Knowledge Capture Conference, 2021: 105-112. [65] NOVAK P K, LAVRA? N, WEBB G I. Supervised descrip-tive rule discovery: a unifying survey of contrast set, emerging pattern and subgroup mining[J]. Journal of Machine Learning Research, 2009, 10(2). [66] RAAD J, PERNELLE N, SA?S F. Detection of contextual identity links in a knowledge base[C]//Proceedings of the Knowledge Capture Conference, 2017: 1-8. [67] PETROVA A, SHERKHONOV E, CUENCA GRAU B, et al. Entity comparison in RDF graphs[C]//Proceedings of the 16th International Semantic Web Conference, Vienna, Oct 21-25, 2017: 526-541. [68] DU L, DING X, XIONG K, et al. ExCAR: event graph know-ledge enhanced explainable causal reasoning[C]//Proceedings of the 59th Annual Meeting of the Association for Computa-tional Linguistics and the 11th International Joint Conference on Natural Language Processing, 2021: 2354-2363. [69] ZEEVI M, DHAMI D S, VELIKOVI P, et al. Relating graph neural networks to structural causal models[J]. arXiv.2109.04173, 2021. [70] WEI Y, WANG X, NIE L, et al. Causal inference for know-ledge graph based recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2022. [71] ZHAO W X, ZHOU K, LI J, et al. A survey of large language models[J]. arXiv:2303.18223, 2023. [72] PAN S, LUO L, WANG Y, et al. Unifying large language models and knowledge graphs: a roadmap[J]. arXiv:2306.08302, 2023. [73] JIN Z, LIU J, LYU Z, et al. Can large language models infer causation from correlation?[J]. arXiv:2306.05836, 2023. [74] SUNG M, LEE J, YI S, et al. Can language models be bio-medical knowledge bases?[J]. arXiv:2109.07154, 2021. [75] WANG X, KAPANIPATHI P, MUSA R, et al. Improving natural language inference using external knowledge in the science questions domain[C]//Proceedings of the 2019 AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2019: 7208-7215. [76] LIN B Y, CHEN X, CHEN J, et al. KagNet: knowledge-aware graph networks for commonsense reasoning[J]. arXiv: 1909.02151, 2019. [77] FENG Y, CHEN X, LIN B Y, et al. Scalable multi-hop re-lational reasoning for knowledge-aware question answering [J]. arXiv:2005.00646, 2020. [78] YASUNAGA M, REN H, BOSSELUT A, et al. QA-GNN: reasoning with language models and knowledge graphs for question answering[J]. arXiv:2104.06378, 2021. [79] SUN Y, SHI Q, QI L, et al. JointLK: joint reasoning with language models and knowledge graphs for commonsense question answering[J]. arXiv:2112.02732, 2021. [80] LEWIS P, PEREZ E, PIKTUS A, et al. Retrieval-augmented generation for knowledge-intensive NLP tasks[J]. arXiv:2005. 11401, 2020. [81] WILMOT D, KELLER F. Memory and knowledge augmented language models for inferring salience in long-form stories[J]. arXiv:2109.03754, 2021. [82] WU Y, ZHAO Y, HU B, et al. An efficient memory-augmented transformer for knowledge-intensive NLP tasks[J]. arXiv: 2210.16773, 2022. [83] GUU K, LEE K, TUNG Z, et al. REALM: retrieval-augmented language model pre-training[J]. arXiv:2002.08909, 2020. [84] LOGAN IV R L, LIU N F, PETERS M E, et al. Barack??s wife hillary: using knowledge-graphs for fact-aware language modeling[J]. arXiv:1906.07241v1, 2019. [85] DANILEVSKY M, QIAN K, AHARONOV R, et al. A survey of the state of explainable AI for natural language pro-cessing[J]. arXiv:2010.00711, 2020. [86] JI Z, LEE N, FRIESKE R, et al. Survey of hallucination in natural language generation[J]. ACM Computing Surveys, 2023, 55(12): 1-38. [87] PETRONI F, ROCKTSCHEL T, LEWIS P, et al. Language models as knowledge bases?[J]. arXiv:1909.01066, 2019. [88] JIANG Z, XU F F, ARAKI J, et al. How can we know what language models know?[J]. arXiv:1911.12543, 2019. [89] ADOLPHS L, DHULIAWALA S, HOFMANN T. How to query language models?[J]. arXiv:2108.01928, 2021. [90] SHIN T, RAZEGHI Y, LOGAN I R L, et al. AutoPrompt: eliciting knowledge from language models with automati-cally generated prompts[J]. arXiv:2010.15980v1, 2020. [91] SUNG M, LEE J, YI S, et al. Can language models be biomedical knowledge bases?[J]. arXiv:2109.07154, 2021. [92] MENG Z, LIU F, SHAREGHI E, et al. Rewire-then-Probe: a contrastive recipe for probing biomedical knowledge of pre-trained language models[J]. arXiv:2110.08173, 2021. [93] MALLEN A, ASAI A, ZHONG V, et al. When not to trust language models: investigating effectiveness and limitations of parametric and non-parametric memories[J]. arXiv:2212.10511, 2022. [94] LIN B Y, CHEN X, CHEN J, et al. KagNet: knowledge-aware graph networks for commonsense reasoning[J]. arXiv: 1909.02151, 2019. [95] LI S, LI X, SHANG L, et al. How pre-trained language models capture factual knowledge? A causal-inspired analysis[J]. arXiv: 2203.16747, 2022. [96] SWAMY V, ROMANOU A, JAGGI M. Interpreting language models through knowledge graph extraction[J]. arXiv:2111. 08546, 2021. [97] DAI D, DONG L, HAO Y, et al. Knowledge neurons in pretrained transformers[J]. arXiv:2104.08696, 2021. [98] CHRISTIANO P, LEIKE J, BROWN T B, et al. Deep rein-forcement learning from human preferences[J]. arXiv:1706.03741, 2017. [99] GAO J, ZHAO H, YU C L, et al. Exploring the feasibility of ChatGPT for event extraction[J]. arXiv:2303.03836, 2023. [100] QIN C, ZHANG A, ZHANG Z, et al. Is ChatGPT a general-purpose natural language processing task solver?[J]. arXiv:2302.06476, 2023. [101] ZHU Y, WANG X, CHEN J, et al. LLMs for knowledge graph construction and reasoning: recent capabilities and future opportunities[J]. arXiv:2305.13168, 2023. [102] MA Y, CAO Y, HONG Y C, et al. Large language model is not a good few-shot information extractor, but a good re-ranker for hard samples![J]. arXiv:2303.08559, 2023. [103] 官赛萍, 靳小龙, 贾岩涛, 等. 面向知识图谱的知识推理研究进展[J]. 软件学报, 2018, 29(10): 2966-2994. GUAN S P, JIN X L, JIA Y T, et al. Knowledge reasoning over knowledge graph: a survey[J]. Journal of Software, 2018, 29(10): 2966-2994. [104] NAYYERI M, WANG Z, AKTER M, et al. Integrating knowledge graph embedding and pretrained language mo-dels in hypercomplex spaces[J]. arXiv:2208.02743, 2022. [105] HUANG N, DESHPANDE Y R, LIU Y, et al. Endowing language models with multimodal knowledge graph repre-sentations[J]. arXiv:2206.13163, 2022. [106] ALAM M M, RONY M R A H, NAYYERI M, et al. Lan-guage model guided knowledge graph embeddings[J]. IEEE Access, 2022, 10: 76008-76020. [107] ZHANG N, XIE X, CHEN X, et al. Reasoning through me-morization: nearest neighbor knowledge graph embeddings[J]. arXiv:2201.05575, 2022. [108] XIE X, LI Z, WANG X, et al. LambdaKG: a library for pre-trained language model-based knowledge graph embeddings[J]. arXiv:2210.00305, 2022. [109] SHEN J, WANG C, GONG L, et al. Joint language semantic and structure embedding for knowledge graph completion[J]. arXiv:2209.08721, 2022. [110] CHOI B, KO Y. Knowledge graph extension with a pre-trained language model via unified learning method[J]. Knowledge-Based Systems, 2023, 262: 110245. [111] LI D, YI M, HE Y. LP-BERT: multi-task pre-training know-ledge graph BERT for link prediction[J]. arXiv:2201.04843, 2022. [112] ZHU Y, WANG X, CHEN J, et al. LLMs for knowledge graph construction and reasoning: recent capabilities and future opportunities[J]. arXiv:2305.13168, 2023. [113] 阮彤, 王梦婕, 王昊奋, 等. 垂直知识图谱的构建与应用研究[J]. 知识管理论坛, 2016(3): 226-234. RUAN T, WANG M J, WANG H F, et al. Research on the construction and application of vertical knowledge graphs[J]. Knowledge Management Forum, 2016(3): 226-234. [114] LIU Q, LIN H, XIAO X, et al. Fine-grained entity typing via label reasoning[J]. arXiv:2109.05744v1, 2021. [115] CATTAN A, EIREW A, STANOVSKY G, et al. Cross-document coreference resolution over predicted mentions[J]. arXiv:2106.01210, 2021. [116] HAN J, COLLIER N, BUNTINE W, et al. PiVe: prompting with iterative verification improving graph-based generative capability of LLMs[J]. arXiv:2305.12392, 2023. [117] WEST P, BHAGAVATULA C, HESSEL J, et al. Symbolic knowledge distillation: from general language models to commonsense models[J]. arXiv:2110.07178, 2021. [118] 冉紫涵, 张仰森, 向尕, 等. 因果关系抽取研究综述[J]. 北京信息科技大学学报(自然科学版), 2023, 38(3): 89-100. RAN Z H, ZHANG Y S, XIANG G, et al. A review of causal relation extraction research[J]. Journal of Beijing Informa-tion Science & Technology University (Natural Science Edition), 2023, 38(3): 89-100. [119] 王昊奋, 漆桂林, 陈华钧. 知识图谱: 方法, 实践与应用[J]. 自动化博览, 2020(1): 7. WANG H F, QI G L, CHEN H J. Knowledge graphs: me-thods, practices, and applications[J]. Automation Panorama, 2020(1): 7. [120] 王鑫, 邹磊, 王朝坤, 等. 知识图谱数据管理研究综述[J]. 软件学报, 2019, 30(7): 2139-2174. WANG X, ZOU L, WANG C K, et al. A review of know-ledge graph data management[J]. Journal of Software, 2019, 30(7): 2139-2174. |
[1] | 崔焕庆, 宋玮情, 杨峻铸. 知识水波图卷积网络推荐模型[J]. 计算机科学与探索, 2023, 17(9): 2209-2218. |
[2] | 钱付兰, 王文学, 郑文杰, 陈洁, 赵姝. 基于层次保留的知识图谱嵌入链路预测方法[J]. 计算机科学与探索, 2023, 17(9): 2174-2183. |
[3] | 延照耀, 丁苍峰, 马乐荣, 曹璐, 游浩. 面向图神经网络的知识图谱嵌入研究进展[J]. 计算机科学与探索, 2023, 17(8): 1793-1813. |
[4] | 李智杰, 韩瑞瑞, 李昌华, 张颉, 石昊琦. 融合预训练模型和注意力的实体关系抽取方法[J]. 计算机科学与探索, 2023, 17(6): 1453-1462. |
[5] | 彭晏飞, 张睿思, 王瑞华, 郭家隆. 少样本知识图谱补全技术研究[J]. 计算机科学与探索, 2023, 17(6): 1268-1284. |
[6] | 赵晔辉, 柳林, 王海龙, 韩海燕, 裴冬梅. 知识图谱推荐系统研究综述[J]. 计算机科学与探索, 2023, 17(4): 771-791. |
[7] | 韩虎, 郝俊, 张千锟, 孟甜甜. 知识增强的交互注意力方面级情感分析模型[J]. 计算机科学与探索, 2023, 17(3): 709-718. |
[8] | 尹华, 肖石冉, 陈智全, 胡振生, 龙泳潮. 多语义关系嵌入的知识图谱补全方法[J]. 计算机科学与探索, 2023, 17(2): 467-477. |
[9] | 马力, 姚伟凡. 结合关系路径与有向子图推理的链接预测方法[J]. 计算机科学与探索, 2023, 17(2): 478-488. |
[10] | 翟岩慧, 何煦, 李德玉, 张超. 融合决策蕴涵的知识图谱推理方法[J]. 计算机科学与探索, 2023, 17(11): 2743-2754. |
[11] | 梁新雨, 司冠南, 李建辛, 田鹏新, 安兆亮, 周风余. 面向知识图谱补全的归纳学习研究综述[J]. 计算机科学与探索, 2023, 17(11): 2580-2604. |
[12] | 许鑫冉, 王腾宇, 鲁才. 图神经网络在知识图谱构建与应用中的研究进展[J]. 计算机科学与探索, 2023, 17(10): 2278-2299. |
[13] | 张鹤译, 王鑫, 韩立帆, 李钊, 陈子睿, 陈哲. 大语言模型融合知识图谱的问答系统研究[J]. 计算机科学与探索, 2023, 17(10): 2377-2388. |
[14] | 潘雨黛, 张玲玲, 蔡忠闽, 赵天哲, 魏笔凡, 刘均. 基于大规模语言模型的知识图谱可微规则抽取[J]. 计算机科学与探索, 2023, 17(10): 2403-2412. |
[15] | 裴炳森, 李欣, 吴越. 基于ChatGPT的电信诈骗案件类型影响力评估[J]. 计算机科学与探索, 2023, 17(10): 2413-2425. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||