[1] BROWN T B, MANN B, RYDER N, et al. Language models are few-shot learners[C]//Advances in Neural Information Processing Systems 33, Dec 6-12, 2020: 1877-1901.
[2] 卢经纬, 郭超, 戴星原, 等. 问答ChatGPT之后:超大预训练模型的机遇和挑战[J]. 自动化学报, 2023, 49(4): 705-717.
LU J W, GUO C, DAI X Y, et al. The ChatGPT after: opportunities and challenges of very large scale pre-trained models[J]. Acta Automatica Sinica, 2023, 49(4): 705-717.
[3] 桑基韬, 于剑. 从ChatGPT看AI未来趋势和挑战[J]. 计算机研究与发展, 2023, 60(6): 1191-1201.
SANG J T, YU J. ChatGPT: a Glimpse into AI’s future[J]. Journal of Computer Research and Development, 2023, 60(6): 1191-1201.
[4] WU C, YIN S, QI W, et al. Visual ChatGPT: talking, drawing and editing with visual foundation models[J]. arXiv:2303.04671, 2023.
[5] YANG Z, LI L, WANG J, et al. MM-ReAct: prompting ChatGPT for multimodal reasoning and action[J]. arXiv:2303.11381, 2023.
[6] SHEN Y, SONG K, TAN X, et al. HuggingGPT: solving AI tasks with ChatGPT and its friends in huggingface[J]. arXiv:2303.17580, 2023.
[7] TOUVRON H, LAVRIL T, IZACARD G, et al. LLaMA: open and efficient foundation language models[J]. arXiv:2302.13971, 2023.
[8] DU Z, QIAN Y, LIU X, et al. GLM: general language model pretraining with autoregressive blank infilling[J]. arXiv:2103.10360, 2021.
[9] ZHU P, CHENG D, YANG F, et al. Improving Chinese named entity recognition by large-scale syntactic dependency graph[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2022, 30: 979-991.
[10] ZHONG Q, TANG Y. Chinese named entity recognition based on gated graph neural network[C]//Proceedings of the 14th International Conference on Knowledge Science, Engineering and Management, Tokyo, Aug 14-16, 2021: 604-613.
[11] 宋旭晖, 于洪涛, 李邵梅. 基于图注意力网络字词融合的中文命名实体识别[J]. 计算机工程, 2022, 48(10): 298-305.
SONG X H,YU H T,LI S M. Chinese named entity recog-nition based on word fusion of graph attention network[J]. Computer Engineering, 2022, 48(10): 298-305.
[12] 段建勇, 朱奕霏, 王昊, 等. 基于位置嵌入多级预测的中文嵌套命名实体识别[J/OL]. 计算机工程 [2023-05-06]. DOI:10.19678/j.issn.1000-3428.0066379.
DUAN J Y, ZHU Y F, WANG H, et al. Chinese nested named entity recognition based on location-embedded multilevel prediction[J/OL]. Computer Engineering [2023-05-06]. DOI:10.19678/j.issn.1000-3428.0066379.
[13] WANG D, TIWARI P, GARG S, et al. Structural block driven enhanced convolutional neural representation for relation extraction[J]. Applied Soft Computing, 2020, 86: 105913.
[14] 郝小芳, 张超群, 李晓翔, 等. 融合交互注意力网络的实体和关系联合抽取模型[J/OL]. 计算机工程与应用 [2023-05-08]. http://kns.cnki.net/kcms/dtail/11.2127.TP.20230506.1624. 020.html.
HAO X F, ZHANG C Q, LI X X, et al. Joint entity relation extraction model based on interactive attention[J/OL]. Com-puter Engineering and Applications [2023-05-08]. http://kns.cnki.net/kcms/dtail/11.2127.TP.20230506.1624.020.html.
[15] 许亮, 张春, 张宁, 等. 融合多Prompt模板的零样本关系抽取模型[J/OL]. 计算机应用[2023-05-08]. http://kns.cnki.net/kcms/detail/51.1307.TP.20230504.1044.018.html.
XU L, ZHANG C, ZHANG N, et al. Zero-shot relation ext-raction model via multi-template fusion in Prompt[J/OL]. Journal of Computer Applications [2023-05-08]. http://kns.cnki.net/kcms/detail/51.1307.TP.20230504.1044.018.html.
[16] LI X, YIN F, SUN Z, et al. Entity-relation extraction as multi-turn question answering[J]. arXiv:1905.05529, 2019.
[17] HUANG Z, XU W, YU K. Bidirectional LSTM-CRF models for sequence tagging[J]. arXiv:1508.01991, 2015.
[18] SOUZA F, NOGUEIRA R, LOTUFO R. Portuguese named entity recognition using BERT-CRF[J]. arXiv:1909.10649, 2019.
[19] XUAN Z, BAO R, JIANG S. FGN: fusion Glyph network for Chinese named entity recognition[C]//Proceedings of the 5th China Conference on Knowledge Graph and Semantic Computing: Knowledge Graph and Cognitive Intelligence, Nanchang, Nov 12-15, 2020: 28-40.
[20] ZHOU Y, ZHENG X, HUANG X. Chinese named entity recog-nition augmented with lexicon memory[J]. arXiv:1912.08282, 2019.
[21] WU S, SONG X, FENG Z. MECT: multi-metadata embed-ding based cross-transformer for Chinese named entity recog-nition[J]. arXiv:2107.05418, 2021.
[22] REN X, ZHOU P, MENG X, et al. PanGu-??: towards trillion parameter language model with sparse heterogeneous com-puting[J]. arXiv:2303.10845, 2023.
[23] FU T J, LI P H, MA W Y. GraphRel: modeling text as rela-tional graphs for joint entity and relation extraction[C]//Pro-ceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Jul 28-Aug 2, 2019: 1409-1418.
[24] XIANG R Z, SHI Z H, DAOJIAN Z, et al. Learning the extraction order of multiple relational facts in a sentence with reinforcement learning[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, Hong Kong, China, Nov 3-7, 2019: 367-377.
[25] WEI Z P. A novel cascade binary tagging framework for relational triple extraction[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Jul 5-10, 2020:?1476-1488. |