[1] MIETTINEN K. Nonlinear multiobjective optimization[M]. Boston: Springer Science & Business Media, 1999.
[2] LI K, DEB K, ZHANG Q, et al. An evolutionary many-objective optimization algorithm based on dominance and decomposition[J]. IEEE Transactions on Evolutionary Computation, 2014, 19(5): 694-716.
[3] HE Z, YEN G G, ZHANG J. Fuzzy-based Pareto optimality for many-objective evolutionary algorithms[J]. IEEE Transactions on Evolutionary Computation, 2013, 18(2): 269-285.
[4] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
[5] 陈德炜, 施永明, 徐威, 等. 基于改进FPA算法的含分布式光伏配电网选址定容多目标优化方法[J]. 电力系统保护与控制, 2022, 50(7): 120-125.
CHEN D W, SHI Y M, XU W, et al. Multi-objective optimization method for location fixed capacity of distributed photo-voltaic distribution network based on improved FPA algorithm[J]. Power System Protection and Control, 2022, 50(7): 120-125.
[6] 耿焕同, 周征礼, 沈俊烨, 等. 面向约束超多目标优化的双阶段搜索策略研究[J]. 计算机工程与应用, 2023, 59(7): 80-91.
GENG H T, ZHOU Z L, SHEN J Y, et al. Research on two-stage search strategy for constrained many-objective optimization[J]. Computer Engineering and Applications, 2023, 59(7): 80-91.
[7] 郑峰婴, 王峰, 甄子洋, 等. 先进布局无人机多目标自适应概率引导控制分配[J]. 控制理论与应用, 2022, 39(12): 2366-2376.
ZHENG F Y, WANG F, ZHEN Z Y, et al. Control allocation of multi-objective adaptive probabilistic guidance for advanced layout unmanned aerial vehicle[J]. Control Theory & Applications, 2022, 39(12): 2366-2376.
[8] 李玲, 郭广颂. 融合指标分组的高维混合多目标进化优化[J]. 计算机工程与应用, 2023, 59(4): 165-174.
LI L, GUO G S. Hybrid many-objective evolutionary optimization combined with indexs decomposition[J]. Computer Engineering and Applications, 2023, 59(4): 165-174.
[9] ZHANG Q, LI H. MOEA/D: a multiobjective evolutionary algorithm based on decomposition[J]. IEEE Transactions on Evolutionary Computation, 2007, 11(6): 712-731.
[10] LI K, FIALHO A, KWONG S, et al. Adaptive operator selection with bandits for a multiobjective evolutionary algorithm based on decomposition[J]. IEEE Transactions on Evolutionary Computation, 2013, 18(1): 114-130.
[11] MA X, YU Y, LI X, et al. A survey of weight vector adjustment methods for decomposition-based multiobjective evolutionary algorithms[J]. IEEE Transactions on Evolutionary Computation, 2020, 24(4): 634-649.
[12] LIU Q, LI X, LIU H, et al. Multi-objective metaheuristics for discrete optimization problems: a review of the state-of-the-art[J]. Applied Soft Computing, 2020, 93: 106382.
[13] XIAO M, CAI K, ABBASS H A. Hybridized encoding for evolutionary multi-objective optimization of air traffic network flow: a case study on China[J]. Transportation Research Part E: Logistics and Transportation Review, 2018, 115: 35-55.
[14] GONG X, DE P T, MARTENS L, et al. Energy-and labor-aware flexible job shop scheduling under dynamic electricity pricing: a many-objective optimization investigation[J]. Journal of Cleaner Production, 2019, 209: 1078-1094.
[15] ROPKE S, PISINGER D. An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows[J]. Transportation Science, 2006, 40(4): 455-472.
[16] DAS I, DENNIS J E. Normal-boundary intersection: a new method for generating the Pareto surface in nonlinear multicriteria optimization problems[J]. SIAM Journal on Optimization, 1998, 8(3): 631-657.
[17] PISINGER D, ROPKE S. Handbook of metaheuristics[M]. Berlin: Springer, 2019: 99-127.
[18] ZITZLER E, THIELE L. Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach[J]. IEEE Transactions on Evolutionary Computation, 1999, 3(4): 257-271.
[19] HADKA D, REED P. Borg: an auto-adaptive many-objective evolutionary computing framework[J]. Evolutionary Computation, 2013, 21(2): 231.
[20] DEB K, JAIN H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints[J]. IEEE Transactions on Evolutionary Computation, 2014, 18(4): 577-601.
[21] KNOWLES J, CORNE D. On metrics for comparing nondominated sets[C]//Proceedings of the 2002 Congress on Evolutionary Computation, Honolulu, May 12-17, 2002. Pisca-taway: IEEE, 2002: 711-716.
[22] 张澎, 王鲁达, 胡丹. 基于量子遗传算法的蚁群多目标优化研究[J]. 计算机仿真, 2013, 30(4): 322-325.
ZHANG P, WANG L D, HU D. Multi-objective optimization of ant colonies based on quantum genetic algorithm[J]. Computer Simulation, 2013, 30(4): 322-325.
[23] KANTOUR N, BOUROUBI S, CHAABANE D. A parallel MOEA with criterion-based selection applied to the knapsack problem[J]. Applied Soft Computing, 2019, 80: 358-373.
[24] ZITZLER E. Evolutionary algorithms for multiobjective optimization: methods and applications[D]. Zurich: Swiss Federal Institute of Technology, 1999.
[25] 陈绍东, 程正兴, 牛子昱. 港口与泊位协同调度优化模型构建[J]. 统计与决策, 2017(18): 50-55.
CHEN S D, CHENG Z X, NIU Z Y. Construction of port and berth collaborative scheduling optimization model[J]. Statistics & Decision, 2017(18): 50-55.
[26] 毕娅, 李文锋. 集装箱港口集群下多港口多泊位联合调度方法[J]. 计算机应用, 2012, 32(2): 448-451.
BI Y, LI W F. Multi-port and multi-berth joint dispatching method under container port cluster[J]. Journal of Computer Applications, 2012, 32(2): 448-451.
[27] JIMéNEZ M, BILBAO-TEROL A, ARENAS-PARRA M. A model for solving incompatible fuzzy goal programming: an application to portfolio selection[J]. International Transactions in Operational Research, 2018, 25(3): 887-912. |