[1] ZHOU P, LU C, LIN Z, et al. Tensor factorization for low-rank tensor completion[J]. IEEE Transactions on Image Processing, 2017, 27(3): 1152-1163.
[2] CHEN W, SONG N. Low-rank tensor completion: a pseudo-Bayesian learning approach[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 3305-3313.
[3] SIGNORETTO M, TRAN DINH Q, DE LATHAUWER L, et al. Learning with tensors: a framework based on convex optimization and spectral regularization[J]. Machine Learning, 2014, 94: 303-351.
[4] LUO Y, ZHAO X L, MENG D, et al. HLRTF: hierarchical low-rank tensor factorization for inverse problems in multi-dimensional imaging[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, Jun 18-24, 2022. Piscataway: IEEE, 2022: 19303-19312.
[5] WANG J L, HUANG T Z, ZHAO X L, et al. Multi-dimensional visual data completion via low-rank tensor representation under coupled transform[J]. IEEE Transactions on Image Processing, 2021, 30: 3581-3596.
[6] ZENG H, CHEN Y, XIE X, et al. Enhanced nonconvex low-rank approximation of tensor multi-modes for tensor completion[J]. IEEE Transactions on Computational Imaging, 2021, 7: 164-177.
[7] ZHANG X, NG M K. Low rank tensor completion with Poisson observations[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 44(8): 4239-4251.
[8] ZHAO X L, YANG J H, MA T H, et al. Tensor completion via complementary global, local, and nonlocal priors[J]. IEEE Transactions on Image Processing, 2021, 31: 984-999.
[9] HITCHCOCK F L. The expression of a tensor or a polyadic as a sum of products[J]. Journal of Mathematics and Physics, 1927, 6: 164-189.
[10] TUCKER L R. Some mathematical notes on three-mode factor analysis[J]. Psychometrika, 1966, 31(3): 279-311.
[11] WANG Z, DONG J, LIU X, et al. Low-rank tensor completion by approximating the tensor average rank[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Oct 10-17, 2021. Piscataway: IEEE, 2021: 4612-4620.
[12] KONG H, XIE X, LIN Z. T-Schatten-p norm for low-rank tensor recovery[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(6): 1405-1419.
[13] ZHANG Z, ELY G, AERON S, et al. Novel methods for multilinear data completion and de-noising based on tensor-SVD[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, Jun 23-28, 2014. Washington: IEEE Computer Society, 2014: 3842-3849.
[14] XU W H, ZHAO X L, NG M. A fast algorithm for cosine transform based tensor singular value decomposition[EB/OL]. [2023-04-13]. https://arxiv.org/abs/1902.03070.
[15] SONG G, NG M K, ZHANG X. Robust tensor completion using transformed tensor singular value decomposition[J]. Numerical Linear Algebra with Applications, 2020, 27(3): e2299.
[16] CHEN L, JIANG X, LIU X, et al. Logarithmic norm regularized low-rank factorization for matrix and tensor completion[J]. IEEE Transactions on Image Processing, 2021, 30: 3434-3449.
[17] TIAN J L, ZHU Y L, LIU J H. A general multi-factor norm based low-rank tensor completion framework[J]. Applied Intelligence, 2023, 53(16): 19317-19337.
[18] LU C, PENG X, WEI Y. Low-rank tensor completion with a new tensor nuclear norm induced by invertible linear transforms[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 15-20, 2019. Piscataway: IEEE, 2019: 5996-6004.
[19] JIANG T X, NG M K, ZHAO X L, et al. Framelet representation of tensor nuclear norm for third-order tensor completion[J]. IEEE Transactions on Image Processing, 2020, 29: 7233-7244.
[20] JIANG T X, ZHAO X L, ZHANG H, et al. Dictionary learning with low-rank coding coefficients for tensor completion[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(2): 932-946.
[21] LI B Z, ZHAO X L, JI T Y, et al. Nonlinear transform induced tensor nuclear norm for tensor completion[J]. Journal of Scientific Computing, 2022, 92(3): 83.
[22] LI B Z, ZHAO X L, WANG J L, et al. Tensor completion via collaborative sparse and low-rank transforms[J]. IEEE Transactions on Computational Imaging, 2021, 7: 1289-1303.
[23] WANG P P, LI L, CHENG G H. Low-rank tensor completion with sparse regularization in a transformed domain[J]. Numerical Linear Algebra with Applications, 2021, 28(6): e2387.
[24] KILMER M E, MARTIN C D. Factorization strategies for third-order tensors[J]. Linear Algebra and Its Applications, 2011, 435(3): 641-658.
[25] KERNFELD E, KILMER M, AERON S. Tensor-tensor products with invertible linear transforms[J]. Linear Algebra and Its Applications, 2015, 485: 545-570.
[26] CAI J F, CANDèS E J, SHEN Z. A singular value thresholding algorithm for matrix completion[J]. SIAM Journal on Optimization, 2010, 20(4): 1956-1982.
[27] ZHANG Y, LU Z. Penalty decomposition methods for rank minimization[C]//Advances in Neural Information Processing Systems 24, Granada, Dec 12-14, 2011: 46-54.
[28] KRISHNAN D, FERGUS R. Fast image deconvolution using hyper-Laplacian priors[C]//Advances in Neural Information Processing Systems 22, Vancouver, Dec 7-10, 2009. Red Hook: Curran Associates, 2009: 1033-1041.
[29] LI Z, DING S, CHEN W, et al. Proximal alternating minimization for analysis dictionary learning and convergence analysis[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2018, 2(6): 439-449.
[30] DONOHO D L. De-noising by soft-thresholding[J]. IEEE Transactions on Information Theory, 1995, 41(3): 613-627.
[31] WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.
[32] YUHAS R H, BOARDMAN J W, GOETZ A F H. Determination of semi-arid landscape endmembers and seasonal trends using convex geometry spectral unmixing techniques[C]//Summaries of the 4th Annual JPL Airborne Geoscience Workshop, Washington, Oct 25-29, 1993: 205-208.
[33] YAIR N, MICHAELI T. Multi-scale weighted nuclear norm image restoration[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 3165-3174.
[34] YANG J, ZHU Y, LI K, et al. Tensor completion from structurally-missing entries by low-TT-rankness and fiber-wise sparsity[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(6): 1420-1434.
[35] YANG J, YANG X, YE X, et al. Reconstruction of structurally-incomplete matrices with reweighted low-rank and sparsity priors[J]. IEEE Transactions on Image Processing, 2016, 26(3): 1158-1172. |