计算机科学与探索 ›› 2024, Vol. 18 ›› Issue (8): 2014-2033.DOI: 10.3778/j.issn.1673-9418.2311049
陈福仕,沈尧,周池春,丁锰,李居昊,赵东越,雷永升,潘亦伦
出版日期:
2024-08-01
发布日期:
2024-07-29
CHEN Fushi, SHEN Yao, ZHOU Chichun, DING Meng, LI Juhao, ZHAO Dongyue, LEI Yongsheng, PAN Yilun
Online:
2024-08-01
Published:
2024-07-29
摘要: 在光学技术高速发展的现代,步态特征因非接触、非侵入、难伪造、远距离采集等优势受到了学界的广泛关注。目前步态识别算法主要为依赖标签数据的有监督学习方法,庞大的标签标注量在实际应用中面临多重挑战。无监督学习不需要标注就能完成对数据内在特征的自动分析,更贴合实际应用的需求。为了全面认识无监督学习步态识别发展现状及趋势,对领域相关工作进行了梳理。介绍了步态识别常用数据集、通用制作方式以及主流评价指标。从基于GAN的步态识别方法、基于聚类的步态识别方法、基于无监督域适应的步态识别方法和其他方法四个方向详细介绍了目前基于无监督学习的步态识别相关研究思路;选取了CASIA-B、OU-MVLP和OU-ISIR LP三个典型数据集,对主要无监督算法性能进行综合对比;对各方向研究侧重点进行总结讨论,针对存在的交叉研究情况进行评论综述,为未来研究提供借鉴思路。研究分析了无监督步态识别算法目前面临的挑战,并以此展望步态领域未来的发展方向。
陈福仕, 沈尧, 周池春, 丁锰, 李居昊, 赵东越, 雷永升, 潘亦伦. 无监督学习步态识别综述[J]. 计算机科学与探索, 2024, 18(8): 2014-2033.
CHEN Fushi, SHEN Yao, ZHOU Chichun, DING Meng, LI Juhao, ZHAO Dongyue, LEI Yongsheng, PAN Yilun. Review of Unsupervised Learning Gait Recognition[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(8): 2014-2033.
[1] LOURDE R M, KHOSLA D. Fingerprint identification in biometric security systems[J]. International Journal of Computer and Electrical Engineering, 2010, 2(5): 852-855. [2] 姚丽莎, 程家兴. 有限元指纹图像配准[J]. 计算机科学与探索, 2017, 11(4): 643-651. YAO L S, CHENG J X. Fingerprint registration based on finite element[J]. Journal of Frontiers of Computer Science and Technology, 2017, 11(4): 643-651. [3] ADJABI I, OUAHABI A, BENZAOUI A, et al. Past, pre-sent, and future of face recognition: a review[J]. Electronics, 2020, 9(8): 1188. [4] 王海勇, 潘海涛, 刘贵楠. 融合注意力机制和课程式学习的人脸识别方法[J]. 计算机科学与探索, 2023, 17(8): 1893-1903. WANG H Y, PAN H T, LIU G N. Face recognition method based on attention mechanism and curriculum learning[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(8): 1893-1903. [5] 赵慧, 景丽萍, 于剑. 自适应监督下降方法的姿态鲁棒人脸对齐算法[J]. 计算机科学与探索, 2020, 14(4): 649-656. ZHAO H, JING L P, YU J. Pose-robust face alignment with adaptive supervised descent method[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(4): 649-656. [6] TANDEL N H, PRAJAPATI H B, DABHI V K. Voice recog-nition and voice comparison using machine learning techniques: a survey[C]//Proceedings of the 2020 6th International Conference on Advanced Computing and Communication Systems. Piscataway: IEEE, 2020: 459-465. [7] 李伟, 王鹏程, 钟骁, 等. 基于深度学习的跨设备声纹识别方法研究[J]. 单片机与嵌入式系统应用, 2022, 22(12): 16-19. LI W, WANG P C, ZHONG X, et al. Research on cross-device voiceprint recognition method based on deep learning[J]. Microcontrollers & Embedded Systems, 2022, 22(12): 16-19. [8] WILDES R P. Iris recognition: an emerging biometric technology[J]. Proceedings of the IEEE, 1997, 85(9): 1348-1363. [9] 雷松泽, 李永刚, 单奥奎, 等. 虹膜与眼周深度特征融合网络模型[J]. 工程科学与技术, 2024, 56(3): 240-248. LEI S Z, LI Y G, SHAN A K, et al. Deep feature fusion network model for iris and periocular biometrics[J]. Advanced Engineering Sciences, 2024, 56(3): 240-248. [10] 梅建华, 云利军, 朱小鹏. 基于长短期记忆网络的红外人体步态识别方法研究[J]. 激光与光电子学进展, 2022, 59(8): 0811005. MEI J H, YUN L J, ZHU X P. Infrared human gait recognition method based on long and short term memory network [J]. Laser & Optoelectronics Progress, 2022, 59(8): 0811005. [11] 吴文杰, 朱耀麟, 梁颖. 基于WiFi CSI的多特征融合的步态识别[J]. 传感器与微系统, 2023, 42(3): 144-147. WU W J, ZHU Y L, LIANG Y. Multi-feature fusion gait recognition based on WiFi CSI[J]. Transducer and Microsystem Technologies, 2023, 42(3): 144-147. [12] 李俊翔, 郝刚, 王伟, 等. 步态识别技术在公安实战警务工作中的应用研究[J]. 警察技术, 2023(2): 84-86. LI J X, HAO G, WANG W, et al. Research on the application of gait recognition technology in public security practical police work[J]. Police Technology, 2023(2): 84-86. [13] 陈春杰. 步态识别技术在公安实战中的应用与发展[J]. 中阿科技论坛(中英文), 2022(10): 120-124. CHEN C J. Research on the application of gait recognition technology in public security combat[J]. China-Arab States Science and Technology Forum, 2022(10): 120-124. [14] 张松, 李江龙, 刘静, 等. 步态识别在疫情防控流调排查中的应用[J]. 中国安防, 2022(11): 95-99. ZHANG S, LI J L, LIU J, et al. Application of gait recognition in outbreak prevention and control streaming screening[J]. China Security & Protection, 2022(11): 95-99. [15] BARI A S M H, GAVRILOVA M L. Artificial neural network based gait recognition using kinect sensor[J]. IEEE Access, 2019, 7: 162708-162722. [16] NIXON M S, CARTER J N, CUNADO D, et al. Automatic gait recognition[M]//JAIN A K, BOLLE R, PANKANTI S. Biometrics. Boston: Springer US, 1999: 231-249. [17] YANG J C, ZHOU J X, FAN D Y, et al. Design of intelligent recognition system based on gait recognition technology in smart transportation[J]. Multimedia Tools and Applications, 2016, 75(24): 17501-17514. [18] LIN B B, ZHANG S L, LIU Y, et al. Multi-scale temporal information extractor for gait recognition[C]//Proceedings of the 2021 IEEE International Conference on Image Processing. Piscataway: IEEE, 2021: 2998-3002. [19] SPRAGER S, JURIC M. Inertial sensor-based gait recognition: a review[J]. Sensors, 2015, 15(9): 22089-22127. [20] BHARGAVAS W G, HARSHAVARDHAN K, MOHAN G C, et al. Human identification using gait recognition[C]//Proceedings of the 2017 International Conference on Communication and Signal Processing. Piscataway: IEEE, 2017: 1510-1513. [21] MURRAY M P. Gait as a total pattern of movement: including a bibliography on gait[J]. American Journal of Physical Medicine & Rehabilitation, 1967, 46(1): 290-333. [22] HASAN M A M, AL ABIR F, AL SIAM M, et al. Gait recognition with wearable sensors using modified residual block-based lightweight CNN[J]. IEEE Access, 2022, 10: 42577-42588. [23] SHEN C F, CHAO F, WU W, et al. LidarGait: benchmarking 3D gait recognition with point clouds[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 1054-1063. [24] ZHAO G Y, LIU G Y, LI H, et al. 3D gait recognition using multiple cameras[C]//Proceedings of the 7th International Conference on Automatic Face and Gesture Recognition. Piscataway: IEEE, 2006: 529-534. [25] HAN J, BHANU B. Individual recognition using gait energy image[J]. IEEE Transactions on Pattern Analysis and Ma-chine Intelligence, 2006, 28(2): 316-322. [26] WANG C, ZHANG J, PU J, et al. Chrono-gait image: a novel temporal template for gait recognition[C]//Proceedings of the 11th European Conference on Computer Vision, Heraklion, Sep 5-11, 2010. Berlin, Heidelberg: Springer, 2010: 257-270. [27] CHEN C, LIANG J, ZHAO H, et al. Frame difference energy image for gait recognition with incomplete silhouettes[J]. Pattern Recognition Letters, 2009, 30(11): 977-984. [28] BASHIR K, XIANG T, GONG S. Gait recognition using gait entropy image[C]//Proceedings of the 3rd International Conference on Imaging for Crime Detection and Prevention, London, Dec 3, 2009: 1-6. [29] 张红颖, 田鹏华. 结合残差网络与多级分块结构的步态识别方法[J]. 电子测量与仪器学报, 2022, 36(6): 66-72. ZHANG H Y, TIAN P H. Gait recognition method combining residual network and multi-level block structure[J]. Journal of Electronic Measurement and Instrumentation, 2022, 36(6): 66-72. [30] 周潇涵, 王修晖. 基于非对称双路识别网络的步态识别方法[J]. 计算机工程与应用, 2022, 58(4): 150-156. ZHOU X H, WANG X H. Novel gait recognition method based on asymmetric two-path network[J]. Computer Engineering and Applications, 2022, 58(4): 150-156. [31] XING W, LI Y, ZHANG S. View-invariant gait recognition method by three-dimensional convolutional neural network[J]. Journal of Electronic Imaging, 2018, 27(1): 013010. [32] LIAO R, CAO C, GARCIA E B, et al. Pose-based temporal-spatial network (PTSN) for gait recognition with carrying and clothing variations[C]//Proceedings of the 12th Chinese Conference on Biometric Recognition, Shenzhen, Oct 28-29, 2017. Cham: Springer, 2017: 474-483. [33] 张超越, 张荣. 结合轮廓与姿态的时空融合步态识别方法[J]. 计算机工程与应用, 2023, 59(16): 135-142. ZHANG C Y, ZHANG R. Spatio-temporal fusion gait recognition method combining silhouette and pose[J]. Computer Engineering and Applications, 2023, 59(16): 135-142. [34] 段成阁, 刘康康, 李福全. 步态识别技术综述[J]. 中国人民公安大学学报(自然科学版), 2022, 28(4): 75-80. DUAN C G, LIU K K, LI F Q. Survey of gait recognition technology[J]. Journal of People??s Public Security University of China (Science and Technology), 2022, 28(4): 75-80. [35] 刘晓芳, 周航, 韩权, 等. 基于视觉的步态识别研究综述[J]. 小型微型计算机系统, 2018, 39(8): 1685-1692. LIU X F, ZHOU H, HAN Q, et al. Survey of vision-based gait recognition[J]. Journal of Chinese Computer Systems, 2018, 39(8): 1685-1692. [36] 祁磊, 于沛泽, 高阳. 弱监督场景下的行人重识别研究综述[J]. 软件学报, 2020, 31(9): 2883-2902. QI L, YU P Z, GAO Y. Research on weak-supervised person re-identification[J]. Journal of Software, 2020, 31(9): 2883-2902. [37] 徐岩, 郭晓燕, 荣磊磊. 无监督学习的车辆重识别方法研究综述[J]. 计算机科学与探索, 2023, 17(5): 1017-1037. XU Y, GUO X Y, RONG L L. Review of research on vehicle re-identification methods with unsupervised learning[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(5): 1017-1037. [38] 朱小鹏, 云利军, 张春节, 等. 基于深度学习的红外图像人体步态识别方法[J]. 计算机工程与设计, 2022, 43(3): 851-857. ZHU X P, YUN L J, ZHANG C J, et al. Gait recognition method based on deep learning in infrared image[J]. Computer Engineering and Design, 2022, 43(3): 851-857. [39] 杜兰, 陈晓阳, 石钰, 等. MMRGait-1.0: 多视角多穿着条件下的雷达时频谱图步态识别数据集[J]. 雷达学报, 2023, 12(4): 892-905. DU L, CHEN X Y, SHI Y, et al. MMRGait-1.0: a radar time-frequency spectrogram dataset for gait recognition under multi-view and multi-wearing conditions[J]. Journal of Radars,2023, 12(4): 892-905. [40] GROSS R, SHI J. The CMU motion of body (MoBo) database: CMU-RI-TR-01-18[R]. 2001. [41] SHUTLER J D, GRANT M G, NIXON M S, et al. On a large sequence-based human gait database[C]//Applications and Science in Soft Computing. Berlin, Heidelberg: Springer, 2004: 339-346. [42] PHILLIPS P J, SARKAR S, ROBLEDO I, et al. Baseline results for the challenge problem of HumanID using gait analy-sis[C]//Proceedings of the 5th IEEE International Conference on Automatic Face Gesture Recognition. Piscataway: IEEE, 2002: 137-142. [43] YU S Q, TAN T N, HUANG K Q, et al. A study on gait-based gender classification[J]. IEEE Transactions on Image Processing, 2009, 18(8): 1905-1910. [44] ZHENG S, HUANG K Q, TAN T N. Evaluation framework on translation-invariant representation for cumulative foot pressure image[C]//Proceedings of the 2011 18th IEEE International Conference on Image Processing. Piscataway: IEEE, 2011: 201-204. [45] ZHENG S, ZHANG J G, HUANG K Q, et al. Robust view transformation model for gait recognition[C]//Proceedings of the 2011 18th IEEE International Conference on Image Processing. Piscataway: IEEE, 2011: 2073-2076. [46] MAKIHARA Y, MANNAMI H, TSUJI A, et al. The OU-ISIR gait database comprising the treadmill dataset[J]. IPSJ Transactions on Computer Vision and Applications, 2012, 4: 53-62. [47] IWAMA H, OKUMURA M, MAKIHARA Y, et al. The OU-ISIR gait database comprising the large population dataset and performance evaluation of gait recognition[J]. IEEE Transactions on Information Forensics and Security, 2012, 7(5): 1511-1521. [48] HOFMANN M, GEIGER J, BACHMANN S, et al. The TUM gait from audio, image and depth (GAID) database: multimodal recognition of subjects and traits[J]. Journal of Visual Communication and Image Representation, 2014, 25(1): 195-206. [49] XU C, MAKIHARA Y, LIAO R C, et al. Real-time gait-based age estimation and gender classification from a single image[C]//Proceedings of the 2021 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2021: 3459-3469. [50] ZHU Z, GUO X D, YANG T, et al. Gait recognition in the wild: a benchmark[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 14789-14799. [51] ZHENG J, LIU X, LIU W, et al. Gait recognition in the wild with dense 3D representations and a benchmark[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 20228-20237. [52] FAN C, HOU S, WANG J, et al. Learning gait representation from massive unlabelled walking videos: a benchmark[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(12): 14920-14937. [53] YU S, CHEN H, GARCIA REYES E B, et al. GaitGAN: invariant gait feature extraction using generative adversarial networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2017: 30-37. [54] ZHANG P, WU Q, XU J S. VN-GAN: identity-preserved variation normalizing GAN for gait recognition[C]//Proceedings of the 2019 International Joint Conference on Neural Networks. Piscataway: IEEE, 2019: 1-8. [55] LI S Q, LIU W, MA H D, et al. Beyond view transformation: cycle-consistent global and partial perception GAN for view-invariant gait recognition[C]//Proceedings of the 2018 IEEE International Conference on Multimedia and Expo. Piscataway: IEEE, 2018: 1-6. [56] WANG Y Y, SONG C F, HUANG Y, et al. Learning view invariant gait features with two-stream GAN[J]. Neurocomputing, 2019, 339: 245-254. [57] HU B Z, GUAN Y, GAO Y, et al. Robust cross-view gait recognition with evidence: a discriminant gait GAN (DiGGAN) approach[EB/OL]. [2023-09-10]. https://arxiv.org/abs/1811.10493. [58] ZHANG P, WU Q, XU J S. VT-GAN: view transformation GAN for gait recognition across views[C]//Proceedings of the 2019 International Joint Conference on Neural Networks. Piscataway: IEEE, 2019: 1-8. [59] TALAL E B, ORAIBI Z A, WALI A. Gait recognition using deep residual networks and conditional generative adversarial networks[C]//Proceedings of the 2023 IEEE 47th Annual Computers, Software, and Applications Conference. Piscataway: IEEE, 2023: 1179-1185. [60] LIAO R J, AN W Z, YU S Q, et al. Dense-view GEIs set: view space covering for gait recognition based on dense-view GAN[EB/OL]. [2023-09-10]. https://arxiv.org/abs/2009.12516. [61] CHEN X, LUO X Z, WENG J, et al. Multi-view gait image generation for cross-view gait recognition[J]. IEEE Transactions on Image Processing, 2021, 30: 3041-3055. [62] TAKEMURA N, MAKIHARA Y, MURAMATSU D, et al. On input/output architectures for convolutional neural network-based cross-view gait recognition[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2019, 29(9): 2708-2719. [63] REN X Q, HOU S H, CAO C S, et al. Unsupervised gait recognition with selective fusion[EB/OL]. [2023-09-10]. https://arxiv.org/abs/2303.10772. [64] YU W C, YU H Y, HUANG Y, et al. Generalized inter-class loss for gait recognition[C]//Proceedings of the 30th ACM International Conference on Multimedia. New York: ACM, 2022: 141-150. [65] ALJAZAERLY M A A, MAKIHARA Y, MURAMATSU D, et al. Batch hard contrastive loss and its application to cross-view gait recognition[J]. IEEE Access, 2023, 11: 31177-31187. [66] ZHOU C C, GUAN X L, YU Z, et al. An innovative unsupervised gait recognition based tracking system for safeguarding large-scale nature reserves in complex terrain[J]. Expert Systems with Applications, 2024, 244: 122975. [67] ZHENG J K, LIU X C, YAN C G, et al. TraND: transferable neighborhood discovery for unsupervised cross-domain gait recognition[C]//Proceedings of the 2021 IEEE International Symposium on Circuits and Systems. Piscataway: IEEE, 2021: 1-5. [68] WANG L K, HAN R Z, FENG W, et al. From indoor to outdoor: unsupervised domain adaptive gait recognition[EB/OL]. [2023-09-10]. https://arxiv.org/abs/2211.11155. [69] HABIB G, BARZILAY N, SHIMSHI O, et al. Watch where you head: a view-biased domain gap in gait recognition and unsupervised adaptation[EB/OL]. [2023-09-10]. https://arxiv.org/abs/2307.06751. [70] MA K, FU Y, ZHENG D Z, et al. Fine-grained unsupervised domain adaptation for gait recognition[C]//Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 11313-11322. [71] COLA G, AVVENUTI M, VECCHIO A, et al. An unsupervised approach for gait-based authentication[C]//Proceedings of the 2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks. Piscataway: IEEE, 2015: 1-6. [72] XU D, YAN S C, TAO D C, et al. Human gait recognition with matrix representation[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2006, 16(7): 896-903. [73] MANSSOR S A F, SUN S Y, ELHASSAN M A M. Real-time human recognition at night via integrated face and gait recognition technologies[J]. Sensors, 2021, 21(13): 4323. [74] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Advances in Neural Information Processing Systems 27, Montreal, Dec 8-13, 2014: 2672-2680. [75] YOO D, KIM N, PARK S, et al. Pixel-level domain transfer[C]//Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 11-14, 2016. Cham: Springer,2016: 517-532. [76] ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Washington: IEEE Computer Society, 2017: 2223-2232. [77] CHOI Y, CHOI M, KIM M, et al. StarGAN: unified generative adversarial networks for multi-domain image-to-image translation[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2018: 8789-8797. [78] MU F, GU X, GUO Y, et al. Unsupervised domain adaptation for position-independent IMU based gait analysis[C]//Proceedings of the 2020 IEEE Sensors. Piscataway: IEEE, 2020: 1-4. [79] ZHAO H, ZHANG S, WU G, et al. Adversarial multiple source domain adaptation[C]//Advances in Neural Information Processing Systems 31, Montréal, Dec 3-8, 2018: 8568-8579. [80] ZHANG Z, JIANG S, HUANG C, et al. RGB-IR cross-modality person ReID based on teacher-student GAN model[J]. Pattern Recognition Letters, 2021, 150: 155-161. [81] ZHOU Z, LI Y, LI J, et al. GAN-siamese network for cross-domain vehicle re-identification in intelligent transport systems[J]. IEEE Transactions on Network Science and Engineering, 2023, 10(5): 2779-2790. [82] BARDOU P, MARIETTE J, ESCUDIé F, et al. jvenn: an interactive Venn diagram viewer[J]. BMC Bioinformatics, 2014, 15(1): 1-7. [83] 杨彦辰, 云利军, 梅建华, 等. 基于改进ViT的红外人体图像步态识别方法研究[J]. 应用光学, 2023, 44(1): 71-78. YANG Y C, YUN L J, MEI J H, et al. Gait recognition method of infrared human body images based on improved ViT[J]. Journal of Applied Optics, 2023, 44(1): 71-78. [84] 孙妍, 胡龙, 冯雪玲. 基于变换匹配层融合的双模态生物特征识别方法[J]. 计算机工程, 2023, 49(5): 269-276. SUN Y, HU L, FENG X L. Dual-modality biometric feature recognition method based on transform matching layer fusion[J]. Computer Engineering, 2023, 49(5): 269-276. |
[1] | 王兵, 徐裴, 张兴鹏. 傅里叶增强的无偏跨域目标检测研究[J]. 计算机科学与探索, 2024, 18(9): 2436-2448. |
[2] | 许智宏, 张惠斌, 董永峰, 王利琴, 王旭. 问题特征增强的知识追踪模型[J]. 计算机科学与探索, 2024, 18(9): 2466-2475. |
[3] | 方博儒, 仇大伟, 白洋, 刘静. 表面肌电信号在肌肉疲劳研究中的应用综述[J]. 计算机科学与探索, 2024, 18(9): 2261-2275. |
[4] | 徐彦威, 李军, 董元方, 张小利. YOLO系列目标检测算法综述[J]. 计算机科学与探索, 2024, 18(9): 2221-2238. |
[5] | 吴涛, 曹新汶, 先兴平, 袁霖, 张殊, 崔灿一星, 田侃. 图神经网络对抗攻击与鲁棒性评测前沿进展[J]. 计算机科学与探索, 2024, 18(8): 1935-1959. |
[6] | 祝义, 居程程, 郝国生. 基于PathSim的MOOCs知识概念推荐模型[J]. 计算机科学与探索, 2024, 18(8): 2049-2064. |
[7] | 利建铖, 曹路, 何锡权, 廖军红. CT影像下的肺结节分类方法研究综述[J]. 计算机科学与探索, 2024, 18(7): 1705-1724. |
[8] | 温雯, 邓峰颖, 郝志峰, 蔡瑞初, 梁方宇. 时空邻域感知的时序兴趣点推荐[J]. 计算机科学与探索, 2024, 18(7): 1865-1878. |
[9] | 刘源, 董永权, 陈成, 贾瑞, 印婵. 融合热点与长短期兴趣的图神经网络课程推荐模型[J]. 计算机科学与探索, 2024, 18(6): 1600-1612. |
[10] | 闵继源, 鲁统宇, 任婷婷, 陈汝昊. 基于规则集成的可解释机器学习算法及应用[J]. 计算机科学与探索, 2024, 18(6): 1476-1490. |
[11] | 江健, 张琪, 王财勇. 基于深度学习的虹膜识别研究综述[J]. 计算机科学与探索, 2024, 18(6): 1421-1437. |
[12] | 翟文硕, 赵翔, 陈东. 基于可逆图扩散的网络传播溯源方法研究[J]. 计算机科学与探索, 2024, 18(5): 1348-1356. |
[13] | 张凯丽, 王安志, 熊娅维, 刘运. 基于Transformer的单幅图像去雾算法综述[J]. 计算机科学与探索, 2024, 18(5): 1182-1196. |
[14] | 钱忠胜, 张丁, 李端明, 王亚惠, 姚昌森, 俞情媛. 结合用户共同意图及社交关系的群组推荐方法[J]. 计算机科学与探索, 2024, 18(5): 1368-1382. |
[15] | 陈林颖, 刘建华, 郑智雄, 林杰, 徐戈, 孙水华. 多特征交互的方面情感三元组提取[J]. 计算机科学与探索, 2024, 18(4): 1057-1067. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||