[1] SHAO Y, CHEN L, CHEN Y, et al. Identifying multiple influence sources in social networks based on latent space mapping[J]. Information Sciences, 2023, 635: 375-397.
[2] 黄启发, 朱建明, 宋彪, 等. 社交网络信息传播的博弈模型[J]. 小型微型计算机系统, 2014, 35(3): 473-477.
HANG Q F, ZHU J M, SONG B, et al. Game model of infor-mation transmission in social networks[J]. Journal of Chinese Computer Systems, 2014, 35(3): 473-477.
[3] 王元卓, 于建业, 邱雯, 等. 网络群体行为的演化博弈模型与分析方法[J]. 计算机学报, 2015, 38(2): 282-300.
WANG Y Z, YU J Y, QIU W, et al. Evolutionary game model and analysis methods for network group behavior[J]. Chinese Journal of Computers, 2015, 38(2): 282-300.
[4] WANG Z, WANG C, PEI J, et al. Multiple source detection without knowing the underlying propagation model[C]//Proceedings of the 2017 AAAI Conference on Artificial Intelligence, San Francisco, Feb 4-9, 2017. Menlo Park: AAAI, 2017: 217-223.
[5] DONG M, ZHENG B, QUOC VIET HUNG N, et al. Multiple rumor source detection with graph convolutional networks[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management, Beijing, Nov 3-7, 2019. New York: ACM, 2019: 569-578.
[6] WANG J, JIANG J, ZHAO L. An invertible graph diffusion neural network for source localization[C]//Proceedings of the 2022 ACM Web Conference, Lyon, Apr 25-29, 2022. New York: ACM, 2022: 1058-1069.
[7] LING C, JIANG J, WANG J, et al. Source localization of graph diffusion via variational autoencoders for graph inverse problems[C]//Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, Aug 14-18, 2022. New York: ACM, 2022: 1010-1020.
[8] GASTEIGER J, WEI?ENBERGER S, GüNNEMANN S. Diffusion improves graph learning[C]//Advances in Neural Information Processing Systems 32, Vancouver, Dec 8-14, 2019: 13333-13345.
[9] XIA W, LI Y, WU J, et al. DeepIS: susceptibility estimation on social networks[C]//Proceedings of the 14th ACM International Conference on Web Search and Data Mining, Israel, Mar 8-12, 2021. New York: ACM, 2021: 761-769.
[10] BEHRMANN J, GRATHWOHL W, CHEN R T Q, et al. Invertible residual networks[C]//Proceedings of the 2019 International Conference on Machine Learning, California, Jun 9-15, 2019: 573-582.
[11] LUSSEAU D, SCHNEIDER K, BOISSEAU O, et al. The bottlenose dolphin community of doubtful sound features a large proportion of longlasting associations[J]. Behavioral Ecology and Sociobiology, 2003, 54: 396-405.
[12] GLEISER P M, DANON L. Community structure in jazz[J]. Advances in Complex Systems, 2003, 6(4): 565-573.
[13] NEWMAN M E J. Finding community structure in networks using the eigenvectors of matrices[J]. Physical Review E, 2006, 74(3): 036104.
[14] MCCALLUM A, NIGAM K, RENNIE J D, et al. Automating the construction of Internet portals with machine learning[J]. Information Retrieval, 2000, 3: 127-163.
[15] WATTS D J, STROGATZ S H. Collective dynamics of ‘small-world’ networks[J]. Nature, 1998, 393(6684): 440-442.
[16] PRAKASH B A, VREEKEN J, FALOUTSOS C. Spotting culprits in epidemics: how many and which ones?[C]//Proceedings of the 2012 IEEE 12th International Conference on Data Mining, Brussels, Dec 10-13, 2012. Piscataway: IEEE, 2012: 11-20. |