[1] AL-SHAMRI M Y H. Power coefficient as a similarity measure for memory based collaborative recommender systems[J]. Expert Systems with Applications, 2014, 41(13): 5680-5688.
[2] HE X N, DENG K, WANG X, et al. LightGCN: simplifying and powering graph convolution network for recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, Jul 25-30, 2020. New York: ACM, 2020: 639-648.
[3] MASSA P, AVESANI P. Trust-aware recommender systems[C]//Proceedings of the 2007 ACM Conference on Recommender Systems, Minneapolis, Oct 19-20, 2007. New York: ACM, 2007: 17-24.
[4] WANG X, HE X N, WANG M, et al. Neural graph collaborative filtering[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, Paris, Jul 21-25, 2019. New York: ACM, 2019: 165-174.
[5] YANNAM V R, KUMAR J, BABU K S, et al. Enhancing the accuracy of group recommendation using slope one[J]. The Journal of Supercomputing, 2023, 79(1): 499-540.
[6] WANG Y, DAI Z, CAO J, et al. Intra-and inter-association attention network-enhanced policy learning for social group recommendation[J]. World Wide Web, 2023, 26(1): 71-94.
[7] TANJIM M M, SU C, BENJAMIN E, et al. Attentive sequential models of latent intent for next item recommendation[C]//Proceedings of the Web Conference 2020, Taipei, China, Apr 20-24, 2020. New York: ACM, 2020: 2528-2534.
[8] AMER-YAHIA S, ROY S B, CHAWLAT A, et al. Group recommendation: semantics and efficiency[J]. Proceedings of the VLDB Endowment, 2010, 2(1): 754-765.
[9] LIU X J, TIAN Y, MAO Y, et al. Exploring personal impact for group recommendation[C]//Proceedings of the 21st ACM International Conference on Information and Knowledge Management, Maui, Oct 29-Nov 2, 2012. New York: ACM, 2012: 674-683.
[10] LENG Y, YU L. Incorporating global and local social networks for group recommendations[J]. Pattern Recognition, 2022, 127: 108601.
[11] CHEN T, YIN H, CHEN H, et al. AIR: attentional intention-aware recommender systems[C]//Proceedings of the 35th IEEE International Conference on Data Engineering, Macao, China, Apr 8-11, 2019. Piscataway: IEEE, 2019: 304-315.
[12] LI H Y, WANG X, ZHANG Z W, et al. Intention-aware sequential recommendation with structured intent transition[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 34(11): 5403-5414.
[13] CHEN T, YIN H, LONG J, et al. Thinking inside the box: learning hypercube representations for group recommendation[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, Madrid, Jul 11-15, 2022. New York: ACM, 2022: 1664-1673.
[14] DENG X, LIAO G, ZENG Y. Group event recommendation based on a heterogeneous attribute graph considering long-and short-term preferences[J]. Journal of Intelligent Information Systems, 2023, 61(1): 271-297.
[15] LIANG R, ZHANG Q, WANG J, et al. A hierarchical attention network for cross-domain group recommendation[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(3): 3859-3873.
[16] YANNAM V R, KUMAR J, BABU K S, et al. Improving group recommendation using deep collaborative filtering approach[J]. International Journal of Information Technology, 2023,15(3): 1-9.
[17] KUMAR C, CHOWDARY C R. A study on the role of uninterested items in group recommendations[J]. Electronic Com-merce Research, 2022(21): 1-27.
[18] YUAN Q, CONG G, LIN C Y. COM: a generative model for group recommendation[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, Aug 24-27, 2014. New York: ACM, 2014: 163-172.
[19] TRAN L V, PHAM T A N, TAY Y, et al. Interact and decide: medley of sub-attention networks for effective group recommendation[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, Paris, Jul 21-25, 2019. New York: ACM, 2019: 255-264.
[20] LIAO G Q, HUANG X M, XIONG N X, et al. Softwarized attention-based context-aware group recommendation technology in event-based industrial cyber-physical systems[J]. IEEE Transactions on Industrial Informatics, 2021, 17(11): 6894-6905.
[21] WANG X, JIN H Y, ZHANG A, et al. Disentangled graph collaborative filtering[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, Jul 25-30, 2020. New York: ACM, 2020: 1001-1010.
[22] LI K, WANG C D, LAI J H, et al. Self-supervised group graph collaborative filtering for group recommendation[C]//Proceedings of the 16th ACM International Conference on Web Search and Data Mining, Singapore, Feb 27-Mar 3, 2023. New York: ACM, 2023: 69-77.
[23] DU Y, MENG X, ZHANG Y, et al. GERF: a group event recommendation framework based on learning-to-rank[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 32(4): 674-687.
[24] MEI L, REN P, CHEN Z, et al. An attentive interaction network for context-aware recommendations[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management, Torino, Oct 22-26, 2018. New York: ACM, 2018: 157-166.
[25] CHEN W Y, REN P J, CAI F, et al. Improving end-to-end sequential recommendations with intent-aware diversification[C]//Proceedings of the 29th ACM International Conference on Information and Knowledge Management, Oct 19-23, 2020. New York: ACM, 2020: 175-184.
[26] 潘一腾, 何发智, 于海平. 一种基于信任关系隐含相似度的社会化推荐算法[J]. 计算机学报, 2018, 41(1): 65-81.
PAN Y T, HE F Z, YU H P. Social recommendation algorithm using implicit similarity in trust[J]. Chinese Journal of Computers, 2018, 41(1): 65-81.
[27] RENDLE S, FREUDENTHALER C, GANTNER Z, et al. BPR: Bayesian personalized ranking from implicit feedback[C]//Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence, Montreal, Jun 18-21, 2009: 452-461. |